These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


159 related items for PubMed ID: 9321422

  • 21.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 22. Structure and function of the Gondwanian hemoglobin of Pseudaphritis urvillii, a primitive notothenioid fish of temperate latitudes.
    Verde C, Howes BD, De Rosa MC, Raiola L, Smulevich G, Williams R, Giardina B, Parisi E, Di Prisco G.
    Protein Sci; 2004 Oct; 13(10):2766-81. PubMed ID: 15340169
    [Abstract] [Full Text] [Related]

  • 23.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 24.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 25. The hemoglobin system of Pleuragramma antarcticum: correlation of hematological and biochemical adaptations with life style.
    Tamburrini M, D'Avino R, Carratore V, Kunzmann A, di Prisco G.
    Comp Biochem Physiol A Physiol; 1997 Dec; 118(4):1037-44. PubMed ID: 9505418
    [Abstract] [Full Text] [Related]

  • 26. Conservation of globin genes in the "living fossil" Latimeria chalumnae and reconstruction of the evolution of the vertebrate globin family.
    Schwarze K, Burmester T.
    Biochim Biophys Acta; 2013 Sep; 1834(9):1801-12. PubMed ID: 23360762
    [Abstract] [Full Text] [Related]

  • 27. Tracking the evolutionary loss of hemoglobin expression by the white-blooded Antarctic icefishes.
    di Prisco G, Cocca E, Parker S, Detrich H.
    Gene; 2002 Aug 07; 295(2):185-91. PubMed ID: 12354652
    [Abstract] [Full Text] [Related]

  • 28. A "living fossil" sequence: primary structure of the coelacanth (Latimeria chalumnae) hemoglobin--evolutionary and functional aspects.
    Gorr T, Kleinschmidt T, Sgouros JG, Kasang L.
    Biol Chem Hoppe Seyler; 1991 Aug 07; 372(8):599-612. PubMed ID: 1958318
    [Abstract] [Full Text] [Related]

  • 29. The hemoglobins of the antarctic fishes Atedidraco orianae and Pogonophryne scotti. Amino acid sequence, lack of cooperativity, and ligand binding properties.
    Tamburrini M, Romano M, Carratore V, Kunzmann A, Coletta M, di Prisco G.
    J Biol Chem; 1998 Dec 04; 273(49):32452-9. PubMed ID: 9829976
    [Abstract] [Full Text] [Related]

  • 30. A genomic fossil reveals key steps in hemoglobin loss by the antarctic icefishes.
    Near TJ, Parker SK, Detrich HW.
    Mol Biol Evol; 2006 Nov 04; 23(11):2008-16. PubMed ID: 16870682
    [Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32. Molecular characterization of the functionally distinct hemoglobins of the Antarctic fish Trematomus newnesi.
    D'Avino R, Caruso C, Tamburrini M, Romano M, Rutigliano B, Polverino de Laureto P, Camardella L, Carratore V, di Prisco G.
    J Biol Chem; 1994 Apr 01; 269(13):9675-81. PubMed ID: 8144556
    [Abstract] [Full Text] [Related]

  • 33. Transcriptomic and genomic evolution under constant cold in Antarctic notothenioid fish.
    Chen Z, Cheng CH, Zhang J, Cao L, Chen L, Zhou L, Jin Y, Ye H, Deng C, Dai Z, Xu Q, Hu P, Sun S, Shen Y, Chen L.
    Proc Natl Acad Sci U S A; 2008 Sep 02; 105(35):12944-9. PubMed ID: 18753634
    [Abstract] [Full Text] [Related]

  • 34. Antarctic fish hemoglobins: evidence for adaptive evolution at subzero temperature.
    Bargelloni L, Marcato S, Patarnello T.
    Proc Natl Acad Sci U S A; 1998 Jul 21; 95(15):8670-5. PubMed ID: 9671736
    [Abstract] [Full Text] [Related]

  • 35. Mobilization of retrotransposons as a cause of chromosomal diversification and rapid speciation: the case for the Antarctic teleost genus Trematomus.
    Auvinet J, Graça P, Belkadi L, Petit L, Bonnivard E, Dettaï A, Detrich WH, Ozouf-Costaz C, Higuet D.
    BMC Genomics; 2018 May 09; 19(1):339. PubMed ID: 29739320
    [Abstract] [Full Text] [Related]

  • 36. Accelerated evolution at chaperone promoters among Antarctic notothenioid fishes.
    Bogan SN, Place SP.
    BMC Evol Biol; 2019 Nov 06; 19(1):205. PubMed ID: 31694524
    [Abstract] [Full Text] [Related]

  • 37. Hemoglobin from the Antarctic fish Notothenia coriiceps neglecta. 1. Purification and characterisation.
    D'Avino R, Di Prisco G.
    Eur J Biochem; 1989 Feb 15; 179(3):699-705. PubMed ID: 2920734
    [Abstract] [Full Text] [Related]

  • 38. Molecular adaptations in Antarctic fish and marine microorganisms.
    Giordano D, Russo R, di Prisco G, Verde C.
    Mar Genomics; 2012 Jun 15; 6():1-6. PubMed ID: 22578653
    [Abstract] [Full Text] [Related]

  • 39. Biochemical adaptations of notothenioid fishes: comparisons between cold temperate South American and New Zealand species and Antarctic species.
    Coppes Petricorena ZL, Somero GN.
    Comp Biochem Physiol A Mol Integr Physiol; 2007 Jul 15; 147(3):799-807. PubMed ID: 17293146
    [Abstract] [Full Text] [Related]

  • 40. The evolution of polar fish hemoglobin: a phylogenetic analysis of the ancestral amino acid residues linked to the root effect.
    Verde C, Parisi E, di Prisco G.
    J Mol Evol; 2003 Jul 15; 57 Suppl 1():S258-67. PubMed ID: 15008423
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 8.