These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


157 related items for PubMed ID: 9329033

  • 1. Effects of topical N-methyl-D-aspartate on blood-brain barrier permeability in the cerebral cortex of normotensive and hypertensive rats.
    Chi OZ, Chang Q, Weiss HR.
    Neurol Res; 1997 Oct; 19(5):539-44. PubMed ID: 9329033
    [Abstract] [Full Text] [Related]

  • 2. Effects of VEGF and nitric oxide synthase inhibition on blood-brain barrier disruption in the ischemic and non-ischemic cerebral cortex.
    Chi OZ, Hunter C, Liu X, Weiss HR.
    Neurol Res; 2005 Dec; 27(8):864-8. PubMed ID: 16354548
    [Abstract] [Full Text] [Related]

  • 3. Effects of isoproterenol on blood-brain barrier permeability in rats.
    Chi OZ, Wang G, Chang Q, Weiss HR.
    Neurol Res; 1998 Apr; 20(3):259-64. PubMed ID: 9583589
    [Abstract] [Full Text] [Related]

  • 4. Effects of exogenous excitatory amino acid neurotransmitters on blood-brain barrier disruption in focal cerebral ischemia.
    Chi OZ, Hunter C, Liu X, Weiss HR.
    Neurochem Res; 2009 Jul; 34(7):1249-54. PubMed ID: 19127429
    [Abstract] [Full Text] [Related]

  • 5. Effects of endothelin-1 on blood-brain barrier permeability during focal cerebral ischemia in rats.
    Chi OZ, Liu X, Weiss HR.
    Exp Brain Res; 2001 Nov; 141(1):1-5. PubMed ID: 11685406
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Effects of metabotropic glutamate receptor stimulation on blood-brain barrier permeability during focal cerebral ischemia.
    Liu X, Chi OZ, Weiss HR.
    Neurochem Res; 2004 Oct; 29(10):1857-62. PubMed ID: 15532541
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Cerebral microregional oxygen balance during chronic versus acute hypertension in middle cerebral artery occluded rats.
    Chi OZ, Wei HM, Tse J, Klein SL, Weiss HR.
    Anesth Analg; 1996 Mar; 82(3):587-92. PubMed ID: 8623966
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Evidence that remodeling of insular cortex neurovascular unit contributes to hypertension-related sympathoexcitation.
    Marins FR, Iddings JA, Fontes MA, Filosa JA.
    Physiol Rep; 2017 Mar; 5(5):. PubMed ID: 28270592
    [Abstract] [Full Text] [Related]

  • 12. The blood-brain barrier in young spontaneously hypertensive rats.
    Mueller SM.
    Acta Neurol Scand; 1982 Jun; 65(6):623-8. PubMed ID: 7113667
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. NMDA-stimulated Ca2+ uptake into barrel cortex slices of spontaneously hypertensive rats.
    Lehohla M, Russell V, Kellaway L.
    Metab Brain Dis; 2001 Dec; 16(3-4):133-41. PubMed ID: 11769326
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Microvascular adaptation in the cerebral cortex of adult spontaneously hypertensive rats.
    Harper SL, Bohlen HG.
    Hypertension; 1984 Dec; 6(3):408-19. PubMed ID: 6735460
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.