These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
94 related items for PubMed ID: 9335531
1. Binding of 2,6- and 2,7-dihydroxynaphthalene to wild-type and E-B13Q insulins: dynamic, equilibrium, and molecular modeling investigations. Bloom CR, Heymann R, Kaarsholm NC, Dunn MF. Biochemistry; 1997 Oct 21; 36(42):12746-58. PubMed ID: 9335531 [Abstract] [Full Text] [Related]
2. Half-site reactivity, negative cooperativity, and positive cooperativity: quantitative considerations of a plausible model. Bloom CR, Kaarsholm NC, Ha J, Dunn MF. Biochemistry; 1997 Oct 21; 36(42):12759-65. PubMed ID: 9335532 [Abstract] [Full Text] [Related]
3. Comparison of the allosteric properties of the Co(II)- and Zn(II)-substituted insulin hexamers. Bloom CR, Wu N, Dunn A, Kaarsholm NC, Dunn MF. Biochemistry; 1998 Aug 04; 37(31):10937-44. PubMed ID: 9692986 [Abstract] [Full Text] [Related]
4. Mechanisms of stabilization of the insulin hexamer through allosteric ligand interactions. Rahuel-Clermont S, French CA, Kaarsholm NC, Dunn MF, Chou CI. Biochemistry; 1997 May 13; 36(19):5837-45. PubMed ID: 9153424 [Abstract] [Full Text] [Related]
5. Carboxylate ions are strong allosteric ligands for the HisB10 sites of the R-state insulin hexamer. Huang ST, Choi WE, Bloom C, Leuenberger M, Dunn MF. Biochemistry; 1997 Aug 12; 36(32):9878-88. PubMed ID: 9245420 [Abstract] [Full Text] [Related]
6. Binding of phenol to R6 insulin hexamers. Berchtold H, Hilgenfeld R. Biopolymers; 1999 Aug 12; 51(2):165-72. PubMed ID: 10397800 [Abstract] [Full Text] [Related]
8. Functional consequences of mutations at the allosteric interface in hetero- and homo-hemoglobin tetramers. Baudin V, Pagnier J, Kiger L, Kister J, Schaad O, Bihoreau MT, Lacaze N, Marden MC, Edelstein SJ, Poyart C. Protein Sci; 1993 Aug 12; 2(8):1320-30. PubMed ID: 8401217 [Abstract] [Full Text] [Related]
9. Spectroscopic evidence for preexisting T- and R-state insulin hexamer conformations. Choi WE, Borchardt D, Kaarsholm NC, Brzovic PS, Dunn MF. Proteins; 1996 Dec 12; 26(4):377-90. PubMed ID: 8990494 [Abstract] [Full Text] [Related]
12. Hydrophobic core substitutions in calbindin D9k: effects on Ca2+ binding and dissociation. Kragelund BB, Jönsson M, Bifulco G, Chazin WJ, Nilsson H, Finn BE, Linse S. Biochemistry; 1998 Jun 23; 37(25):8926-37. PubMed ID: 9636034 [Abstract] [Full Text] [Related]
13. Core mutations that promote the calcium-induced allosteric transition of bovine recoverin. Baldwin AN, Ames JB. Biochemistry; 1998 Dec 15; 37(50):17408-19. PubMed ID: 9860856 [Abstract] [Full Text] [Related]
14. Structural asymmetry and half-site reactivity in the T to R allosteric transition of the insulin hexamer. Brzović PS, Choi WE, Borchardt D, Kaarsholm NC, Dunn MF. Biochemistry; 1994 Nov 08; 33(44):13057-69. PubMed ID: 7947711 [Abstract] [Full Text] [Related]
15. The carboxyl side chain of glutamate 681 interacts with a chloride binding modifier site that allosterically modulates the dimeric conformational state of band 3 (AE1). Implications for the mechanism of anion/proton cotransport. Salhany JM, Sloan RL, Cordes KS. Biochemistry; 2003 Feb 18; 42(6):1589-602. PubMed ID: 12578372 [Abstract] [Full Text] [Related]
16. Ligand binding to wild-type and E-B13Q mutant insulins: a three-state allosteric model system showing half-site reactivity. Bloom CR, Choi WE, Brzovic PS, Ha JJ, Huang ST, Kaarsholm NC, Dunn MF. J Mol Biol; 1995 Jan 27; 245(4):324-30. PubMed ID: 7837266 [Abstract] [Full Text] [Related]
17. Nucleotide-induced transition of GroEL from the high-affinity to the low-affinity state for a target protein: effects of ATP and ADP on the GroEL-affected refolding of alpha-lactalbumin. Makio T, Takasu-Ishikawa E, Kuwajima K. J Mol Biol; 2001 Sep 21; 312(3):555-67. PubMed ID: 11563916 [Abstract] [Full Text] [Related]