These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


551 related items for PubMed ID: 9356303

  • 1. A physiologically based pharmacokinetic model for trichloroethylene and its metabolites, chloral hydrate, trichloroacetate, dichloroacetate, trichloroethanol, and trichloroethanol glucuronide in B6C3F1 mice.
    Abbas R, Fisher JW.
    Toxicol Appl Pharmacol; 1997 Nov; 147(1):15-30. PubMed ID: 9356303
    [Abstract] [Full Text] [Related]

  • 2. Physiologically based pharmacokinetic modeling of inhaled trichloroethylene and its oxidative metabolites in B6C3F1 mice.
    Greenberg MS, Burton GA, Fisher JW.
    Toxicol Appl Pharmacol; 1999 Feb 01; 154(3):264-78. PubMed ID: 9931286
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Kinetics of chloral hydrate and its metabolites in male human volunteers.
    Merdink JL, Robison LM, Stevens DK, Hu M, Parker JC, Bull RJ.
    Toxicology; 2008 Mar 12; 245(1-2):130-40. PubMed ID: 18243465
    [Abstract] [Full Text] [Related]

  • 5. Pharmacokinetic analysis of chloral hydrate and its metabolism in B6C3F1 mice.
    Abbas RR, Seckel CS, Kidney JK, Fisher JW.
    Drug Metab Dispos; 1996 Dec 12; 24(12):1340-6. PubMed ID: 8971140
    [Abstract] [Full Text] [Related]

  • 6. The extent of dichloroacetate formation from trichloroethylene, chloral hydrate, trichloroacetate, and trichloroethanol in B6C3F1 mice.
    Merdink JL, Gonzalez-Leon A, Bull RJ, Schultz IR.
    Toxicol Sci; 1998 Sep 12; 45(1):33-41. PubMed ID: 9848108
    [Abstract] [Full Text] [Related]

  • 7. Bayesian population analysis of a harmonized physiologically based pharmacokinetic model of trichloroethylene and its metabolites.
    Hack CE, Chiu WA, Jay Zhao Q, Clewell HJ.
    Regul Toxicol Pharmacol; 2006 Oct 12; 46(1):63-83. PubMed ID: 16889879
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. In vivo effects of naproxen, salicylic acid, and valproic acid on the pharmacokinetics of trichloroethylene and metabolites in rats.
    Rouhou MC, Charest-Tardif G, Haddad S.
    J Toxicol Environ Health A; 2015 Oct 12; 78(11):671-84. PubMed ID: 26039745
    [Abstract] [Full Text] [Related]

  • 10. Relative formation of dichloroacetate and trichloroacetate from trichloroethylene in male B6C3F1 mice.
    Templin MV, Parker JC, Bull RJ.
    Toxicol Appl Pharmacol; 1993 Nov 12; 123(1):1-8. PubMed ID: 8236248
    [Abstract] [Full Text] [Related]

  • 11. Mouse liver microsomal metabolism of chloral hydrate, trichloroacetic acid, and trichloroethanol leading to induction of lipid peroxidation via a free radical mechanism.
    Ni YC, Wong TY, Lloyd RV, Heinze TM, Shelton S, Casciano D, Kadlubar FF, Fu PP.
    Drug Metab Dispos; 1996 Jan 12; 24(1):81-90. PubMed ID: 8825194
    [Abstract] [Full Text] [Related]

  • 12. Extrahepatic metabolism of chloral hydrate, trichloroethanol and trichloroacetic acid in dogs.
    Hobara T, Kobayashi H, Kawamoto T, Iwamoto S, Sakai T.
    Pharmacol Toxicol; 1987 Jul 12; 61(1):58-62. PubMed ID: 3628182
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Species- and sex-related differences in metabolism of trichloroethylene to yield chloral and trichloroethanol in mouse, rat, and human liver microsomes.
    Elfarra AA, Krause RJ, Last AR, Lash LH, Parker JC.
    Drug Metab Dispos; 1998 Aug 12; 26(8):779-85. PubMed ID: 9698293
    [Abstract] [Full Text] [Related]

  • 16. The absorption of trichloroethylene and its metabolites from the urinary bladder of anesthetized dogs.
    Hobara T, Kobayashi H, Kawamoto T, Iwamoto S, Sakai T.
    Toxicology; 1988 Feb 12; 48(2):141-53. PubMed ID: 3341043
    [Abstract] [Full Text] [Related]

  • 17. Species differences in the metabolism of trichloroethylene to the carcinogenic metabolites trichloroacetate and dichloroacetate.
    Larson JL, Bull RJ.
    Toxicol Appl Pharmacol; 1992 Aug 12; 115(2):278-85. PubMed ID: 1641861
    [Abstract] [Full Text] [Related]

  • 18. Application of cryopreserved human hepatocytes in trichloroethylene risk assessment: relative disposition of chloral hydrate to trichloroacetate and trichloroethanol.
    Bronley-DeLancey A, McMillan DC, McMillan JM, Jollow DJ, Mohr LC, Hoel DG.
    Environ Health Perspect; 2006 Aug 12; 114(8):1237-42. PubMed ID: 16882532
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. A review of analytical methods for the determination of trichloroethylene and its major metabolites chloral hydrate, trichloroacetic acid and dichloroacetic acid.
    Delinsky AD, Bruckner JV, Bartlett MG.
    Biomed Chromatogr; 2005 Oct 12; 19(8):617-39. PubMed ID: 15828053
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 28.