These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
318 related items for PubMed ID: 9361288
1. A role of midkine in the development of the neuromuscular junction. Zhou H, Muramatsu T, Halfter W, Tsim KW, Peng HB. Mol Cell Neurosci; 1997; 10(1-2):56-70. PubMed ID: 9361288 [Abstract] [Full Text] [Related]
2. The role of an agrin-growth factor interaction in ACh receptor clustering. Daggett DF, Cohen MW, Stone D, Nikolics K, Rauvala H, Peng HB. Mol Cell Neurosci; 1996; 8(4):272-85. PubMed ID: 9026315 [Abstract] [Full Text] [Related]
3. HGF induction of postsynaptic specializations at the neuromuscular junction. Madhavan R, Peng HB. J Neurobiol; 2006 Feb 05; 66(2):134-47. PubMed ID: 16215993 [Abstract] [Full Text] [Related]
6. Tyrosine phosphatases such as SHP-2 act in a balance with Src-family kinases in stabilization of postsynaptic clusters of acetylcholine receptors. Camilleri AA, Willmann R, Sadasivam G, Lin S, Rüegg MA, Gesemann M, Fuhrer C. BMC Neurosci; 2007 Jul 02; 8():46. PubMed ID: 17605785 [Abstract] [Full Text] [Related]
7. The role of heparin-binding growth-associated molecule (HB-GAM) in the postsynaptic induction in cultured muscle cells. Peng HB, Ali AA, Dai Z, Daggett DF, Raulo E, Rauvala H. J Neurosci; 1995 Apr 02; 15(4):3027-38. PubMed ID: 7722643 [Abstract] [Full Text] [Related]
8. [The role of protein tyrosine phosphatases Shp-2 involved in the formation of the neuromuscular junction]. Zhao XT, Zhang Z. Zhonghua Yi Xue Za Zhi; 2006 Apr 18; 86(15):1052-6. PubMed ID: 16784710 [Abstract] [Full Text] [Related]
9. Development of calcitonin gene-related peptide (CGRP) immunoreactivity in relationship to the formation of neuromuscular junctions in Xenopus myotomal muscle. Peng HB, Chen QM, de Biasi S, Zhu DL. J Comp Neurol; 1989 Dec 22; 290(4):533-43. PubMed ID: 2613943 [Abstract] [Full Text] [Related]
11. Overexpression of agrin isoforms in Xenopus embryos alters the distribution of synaptic acetylcholine receptors during development of the neuromuscular junction. Godfrey EW, Roe J, Heathcote RD. Dev Biol; 1999 Jan 01; 205(1):22-32. PubMed ID: 9882495 [Abstract] [Full Text] [Related]
12. Synergistic effects of neuregulin and agrin on muscle acetylcholine receptor expression. Li Q, Esper RM, Loeb JA. Mol Cell Neurosci; 2004 Aug 01; 26(4):558-69. PubMed ID: 15276157 [Abstract] [Full Text] [Related]
13. Molecular regulation of postsynaptic differentiation at the neuromuscular junction. Madhavan R, Peng HB. IUBMB Life; 2005 Nov 01; 57(11):719-30. PubMed ID: 16511964 [Abstract] [Full Text] [Related]
14. Rodent nerve-muscle cell culture system for studies of neuromuscular junction development: refinements and applications. Daniels MP, Lowe BT, Shah S, Ma J, Samuelsson SJ, Lugo B, Parakh T, Uhm CS. Microsc Res Tech; 2000 Apr 01; 49(1):26-37. PubMed ID: 10757876 [Abstract] [Full Text] [Related]
15. Nitric oxide synthase activity is required for postsynaptic differentiation of the embryonic neuromuscular junction. Schwarte RC, Godfrey EW. Dev Biol; 2004 Sep 15; 273(2):276-84. PubMed ID: 15328012 [Abstract] [Full Text] [Related]
16. Agrin inhibits neurite outgrowth but promotes attachment of embryonic motor and sensory neurons. Chang D, Woo JS, Campanelli J, Scheller RH, Ignatius MJ. Dev Biol; 1997 Jan 01; 181(1):21-35. PubMed ID: 9015262 [Abstract] [Full Text] [Related]
17. Midkine, a retinoic acid-inducible growth/differentiation factor: immunochemical evidence for the function and distribution. Muramatsu H, Shirahama H, Yonezawa S, Maruta H, Muramatsu T. Dev Biol; 1993 Oct 01; 159(2):392-402. PubMed ID: 8405666 [Abstract] [Full Text] [Related]
18. Phosphoinositide 3-kinase acts through RAC and Cdc42 during agrin-induced acetylcholine receptor clustering. Nizhynska V, Neumueller R, Herbst R. Dev Neurobiol; 2007 Jul 01; 67(8):1047-58. PubMed ID: 17565704 [Abstract] [Full Text] [Related]
19. Full-length agrin isoform activities and binding site distributions on cultured Xenopus muscle cells. Daggett DF, Stone D, Peng HB, Nikolics K. Mol Cell Neurosci; 1996 Jan 01; 7(1):75-88. PubMed ID: 8812060 [Abstract] [Full Text] [Related]
20. alpha-Dystrobrevin isoforms differ in their colocalization with and stabilization of agrin-induced acetylcholine receptor clusters. Pawlikowski BT, Maimone MM. Neuroscience; 2008 Jun 23; 154(2):582-94. PubMed ID: 18468804 [Abstract] [Full Text] [Related] Page: [Next] [New Search]