These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


195 related items for PubMed ID: 9361415

  • 21. Accumulation of polyhydroxyalkanoate from styrene and phenylacetic acid by Pseudomonas putida CA-3.
    Ward PG, de Roo G, O'Connor KE.
    Appl Environ Microbiol; 2005 Apr; 71(4):2046-52. PubMed ID: 15812037
    [Abstract] [Full Text] [Related]

  • 22. The styrene monooxygenase system.
    Gassner GT.
    Methods Enzymol; 2019 Apr; 620():423-453. PubMed ID: 31072496
    [Abstract] [Full Text] [Related]

  • 23. Cloning and functional characterization of the styE gene, involved in styrene transport in Pseudomonas putida CA-3.
    Mooney A, O'Leary ND, Dobson AD.
    Appl Environ Microbiol; 2006 Feb; 72(2):1302-9. PubMed ID: 16461680
    [Abstract] [Full Text] [Related]

  • 24. Structure-Based Redesign of a Self-Sufficient Flavin-Containing Monooxygenase towards Indigo Production.
    Lončar N, van Beek HL, Fraaije MW.
    Int J Mol Sci; 2019 Dec 05; 20(24):. PubMed ID: 31817552
    [Abstract] [Full Text] [Related]

  • 25. Indigoid dyes by group E monooxygenases: mechanism and biocatalysis.
    Heine T, Großmann C, Hofmann S, Tischler D.
    Biol Chem; 2019 Jun 26; 400(7):939-950. PubMed ID: 30844759
    [Abstract] [Full Text] [Related]

  • 26. Performance and Microbial Community Analysis of Bioaugmented Activated Sludge System for Indigo Production from Indole.
    Zhang X, Qu Y, Ma Q, Li S, Dai C, Lian S, Zhou J.
    Appl Biochem Biotechnol; 2019 Apr 26; 187(4):1437-1447. PubMed ID: 30246226
    [Abstract] [Full Text] [Related]

  • 27. [Microbial biosynthesis and biotransformation of indigo and indigo-like pigments].
    Han X, Wang W, Xiao X.
    Sheng Wu Gong Cheng Xue Bao; 2008 Jun 26; 24(6):921-6. PubMed ID: 18807970
    [Abstract] [Full Text] [Related]

  • 28. Indigoids Biosynthesis from Indole by Two Phenol-Degrading Strains, Pseudomonas sp. PI1 and Acinetobacter sp. PI2.
    Wang J, Zhang X, Fan J, Zhang Z, Ma Q, Peng X.
    Appl Biochem Biotechnol; 2015 Jul 26; 176(5):1263-76. PubMed ID: 25926013
    [Abstract] [Full Text] [Related]

  • 29. An overview of microbial indigo-forming enzymes.
    Fabara AN, Fraaije MW.
    Appl Microbiol Biotechnol; 2020 Feb 26; 104(3):925-933. PubMed ID: 31834440
    [Abstract] [Full Text] [Related]

  • 30. Hydroxylation of indole by laboratory-evolved 2-hydroxybiphenyl 3-monooxygenase.
    Meyer A, Würsten M, Schmid A, Kohler HP, Witholt B.
    J Biol Chem; 2002 Sep 13; 277(37):34161-7. PubMed ID: 12105208
    [Abstract] [Full Text] [Related]

  • 31. Construction of Biocatalysts Using the P450 Scaffold for the Synthesis of Indigo from Indole.
    Li Y, Lin Y, Wang F, Wang J, Shoji O, Xu J.
    Int J Mol Sci; 2023 Jan 25; 24(3):. PubMed ID: 36768714
    [Abstract] [Full Text] [Related]

  • 32. Protein engineering of toluene ortho-monooxygenase of Burkholderia cepacia G4 for regiospecific hydroxylation of indole to form various indigoid compounds.
    Rui L, Reardon KF, Wood TK.
    Appl Microbiol Biotechnol; 2005 Jan 25; 66(4):422-9. PubMed ID: 15290130
    [Abstract] [Full Text] [Related]

  • 33. Interspecies signalling: Pseudomonas putida efflux pump TtgGHI is activated by indole to increase antibiotic resistance.
    Molina-Santiago C, Daddaoua A, Fillet S, Duque E, Ramos JL.
    Environ Microbiol; 2014 May 25; 16(5):1267-81. PubMed ID: 24373097
    [Abstract] [Full Text] [Related]

  • 34. Characterization of a flavin-containing monooxygenase from Corynebacterium glutamicum and its application to production of indigo and indirubin.
    Ameria SP, Jung HS, Kim HS, Han SS, Kim HS, Lee JH.
    Biotechnol Lett; 2015 Aug 25; 37(8):1637-44. PubMed ID: 25851950
    [Abstract] [Full Text] [Related]

  • 35. Asp305Gly mutation improved the activity and stability of the styrene monooxygenase for efficient epoxide production in Pseudomonas putida KT2440.
    Tan C, Zhang X, Zhu Z, Xu M, Yang T, Osire T, Yang S, Rao Z.
    Microb Cell Fact; 2019 Jan 24; 18(1):12. PubMed ID: 30678678
    [Abstract] [Full Text] [Related]

  • 36. Gene organization of the first catabolic operon of TOL plasmid pWW53: production of indigo by the xylA gene product.
    Keil H, Saint CM, Williams PA.
    J Bacteriol; 1987 Feb 24; 169(2):764-70. PubMed ID: 3027047
    [Abstract] [Full Text] [Related]

  • 37. Induction and repression of the sty operon in Pseudomonas putida CA-3 during growth on phenylacetic acid under organic and inorganic nutrient-limiting continuous culture conditions.
    O'Leary ND, Duetz WA, Dobson AD, O'Connor KE.
    FEMS Microbiol Lett; 2002 Mar 05; 208(2):263-8. PubMed ID: 11959447
    [Abstract] [Full Text] [Related]

  • 38. Genetic characterization of accumulation of polyhydroxyalkanoate from styrene in Pseudomonas putida CA-3.
    O'Leary ND, O'Connor KE, Ward P, Goff M, Dobson AD.
    Appl Environ Microbiol; 2005 Aug 05; 71(8):4380-7. PubMed ID: 16085828
    [Abstract] [Full Text] [Related]

  • 39. Biotransformation of indole to indigo by the whole cells of phenol hydroxylase engineered strain in biphasic systems.
    Shi S, Ma F, Sun T, Li A, Zhou J, Qu Y.
    Appl Biochem Biotechnol; 2013 Feb 05; 169(4):1088-97. PubMed ID: 23306892
    [Abstract] [Full Text] [Related]

  • 40. Indigo production by Pseudomonas sp. J26, a marine naphthalene-degrading strain.
    Mercadal JP, Isaac P, Siñeriz F, Ferrero MA.
    J Basic Microbiol; 2010 Jun 05; 50(3):290-3. PubMed ID: 20473955
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 10.