These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
293 related items for PubMed ID: 9364242
1. Distribution of neurons immunoreactive for parvalbumin and calbindin in the somatosensory thalamus of the raccoon. Herron P, Baskerville KA, Chang HT, Doetsch GS. J Comp Neurol; 1997 Nov 10; 388(1):120-9. PubMed ID: 9364242 [Abstract] [Full Text] [Related]
2. Different populations of parvalbumin- and calbindin-D28k-immunoreactive neurons contain GABA and accumulate 3H-D-aspartate in the dorsal horn of the rat spinal cord. Antal M, Polgár E, Chalmers J, Minson JB, Llewellyn-Smith I, Heizmann CW, Somogyi P. J Comp Neurol; 1991 Dec 01; 314(1):114-24. PubMed ID: 1797867 [Abstract] [Full Text] [Related]
3. Development of the human motor-related thalamic nuclei during the first half of gestation, with special emphasis on GABAergic circuits. Kultas-Ilinsky K, Fallet C, Verney C. J Comp Neurol; 2004 Aug 23; 476(3):267-89. PubMed ID: 15269970 [Abstract] [Full Text] [Related]
4. Calcium-binding proteins as markers for subpopulations of GABAergic neurons in monkey striate cortex. Van Brederode JF, Mulligan KA, Hendrickson AE. J Comp Neurol; 1990 Aug 01; 298(1):1-22. PubMed ID: 2170466 [Abstract] [Full Text] [Related]
5. The calcium binding proteins parvalbumin and calbindin-D 28K form complementary patterns in the cat superior colliculus. Mize RR, Luo Q, Butler G, Jeon CJ, Nabors B. J Comp Neurol; 1992 Jun 08; 320(2):243-56. PubMed ID: 1619052 [Abstract] [Full Text] [Related]
6. Distribution, morphological features, and synaptic connections of parvalbumin- and calbindin D28k-immunoreactive neurons in the human hippocampal formation. Seress L, Gulyás AI, Ferrer I, Tunon T, Soriano E, Freund TF. J Comp Neurol; 1993 Nov 08; 337(2):208-30. PubMed ID: 8276998 [Abstract] [Full Text] [Related]
7. Parvalbumin immunoreactivity in the thalamus of guinea pig: light and electron microscopic correlation with gamma-aminobutyric acid immunoreactivity. De Biasi S, Arcelli P, Spreafico R. J Comp Neurol; 1994 Oct 22; 348(4):556-69. PubMed ID: 7836562 [Abstract] [Full Text] [Related]
8. CalbindinD28k- and parvalbumin-immunoreactive neurons form complementary sublaminae in the rat superior colliculus. Cork RJ, Baber SZ, Mize RR. J Comp Neurol; 1998 May 04; 394(2):205-17. PubMed ID: 9552126 [Abstract] [Full Text] [Related]
9. Parvalbumin and calbindin D-28k in the entopeduncular nucleus, subthalamic nucleus, and substantia nigra of the rat as revealed by double-immunohistochemical methods. Hontanilla B, Parent A, Giménez-Amaya JM. Synapse; 1997 Apr 04; 25(4):359-67. PubMed ID: 9097395 [Abstract] [Full Text] [Related]
10. The distribution of glutamic acid decarboxylase immunoreactivity in the diencephalon of the opossum and rabbit. Penny GR, Conley M, Schmechel DE, Diamond IT. J Comp Neurol; 1984 Sep 01; 228(1):38-56. PubMed ID: 6090511 [Abstract] [Full Text] [Related]
11. Parvalbumin- and calbindin D28k-immunoreactive neurons in the hippocampal formation of the macaque monkey. Seress L, Gulyás AI, Freund TF. J Comp Neurol; 1991 Nov 01; 313(1):162-77. PubMed ID: 1761752 [Abstract] [Full Text] [Related]
12. Chemoarchitecture of GABAergic neurons in the ferret superior colliculus. Behan M, Steinhacker K, Jeffrey-Borger S, Meredith MA. J Comp Neurol; 2002 Oct 28; 452(4):334-59. PubMed ID: 12355417 [Abstract] [Full Text] [Related]
13. Morphology of neurons in the rat basal forebrain nuclei: comparison between NADPH-diaphorase histochemistry and immunohistochemistry of glutamic acid decarboxylase, choline acetyltransferase, somatostatin and parvalbumin. Brauer K, Schober A, Wolff JR, Winkelmann E, Luppa H, Lüth HJ, Böttcher H. J Hirnforsch; 1991 Oct 28; 32(1):1-17. PubMed ID: 1687412 [Abstract] [Full Text] [Related]
14. Calcium-binding protein (calbindin-D28K) and parvalbumin immunocytochemistry in the normal and epileptic human hippocampus. Sloviter RS, Sollas AL, Barbaro NM, Laxer KD. J Comp Neurol; 1991 Jun 15; 308(3):381-96. PubMed ID: 1865007 [Abstract] [Full Text] [Related]
15. The somatosensory thalamus of monkeys: cortical connections and a redefinition of nuclei in marmosets. Krubitzer LA, Kaas JH. J Comp Neurol; 1992 May 01; 319(1):123-40. PubMed ID: 1375605 [Abstract] [Full Text] [Related]
16. Cyto- and chemoarchitecture of the dorsal thalamus of the monotreme Tachyglossus aculeatus, the short beaked echidna. Ashwell KW, Paxinos G. J Chem Neuroanat; 2005 Dec 01; 30(4):161-83. PubMed ID: 16099140 [Abstract] [Full Text] [Related]
17. Immunocytochemical and ultrastructural study of the rat perireticular thalamic nucleus during postnatal development. Amadeo A, De Biasi S, Frassoni C, Ortino B, Spreafico R. J Comp Neurol; 1998 Mar 16; 392(3):390-401. PubMed ID: 9511925 [Abstract] [Full Text] [Related]
18. Parvalbumin-containing GABAergic interneurons in the rat neostriatum. Cowan RL, Wilson CJ, Emson PC, Heizmann CW. J Comp Neurol; 1990 Dec 08; 302(2):197-205. PubMed ID: 2289971 [Abstract] [Full Text] [Related]
19. Calcium-binding protein phenotype defines metabolically distinct groups of neurons in barrel cortex of behaving hamsters. Maier DL, McCasland JS. Exp Neurol; 1997 May 08; 145(1):71-80. PubMed ID: 9184110 [Abstract] [Full Text] [Related]
20. Parvalbumin neurons in the forebrain as revealed by parvalbumin-Cre transgenic mice. Tanahira C, Higo S, Watanabe K, Tomioka R, Ebihara S, Kaneko T, Tamamaki N. Neurosci Res; 2009 Mar 08; 63(3):213-23. PubMed ID: 19167436 [Abstract] [Full Text] [Related] Page: [Next] [New Search]