These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
154 related items for PubMed ID: 9374850
1. A functional CFTR-NBF1 is required for ROMK2-CFTR interaction. McNicholas CM, Nason MW, Guggino WB, Schwiebert EM, Hebert SC, Giebisch G, Egan ME. Am J Physiol; 1997 Nov; 273(5):F843-8. PubMed ID: 9374850 [Abstract] [Full Text] [Related]
2. Sensitivity of a renal K+ channel (ROMK2) to the inhibitory sulfonylurea compound glibenclamide is enhanced by coexpression with the ATP-binding cassette transporter cystic fibrosis transmembrane regulator. McNicholas CM, Guggino WB, Schwiebert EM, Hebert SC, Giebisch G, Egan ME. Proc Natl Acad Sci U S A; 1996 Jul 23; 93(15):8083-8. PubMed ID: 8755607 [Abstract] [Full Text] [Related]
3. Identification of the cystic fibrosis transmembrane conductance regulator domains that are important for interactions with ROMK2. Cahill P, Nason MW, Ambrose C, Yao TY, Thomas P, Egan ME. J Biol Chem; 2000 Jun 02; 275(22):16697-701. PubMed ID: 10748197 [Abstract] [Full Text] [Related]
4. Rat homolog of sulfonylurea receptor 2B determines glibenclamide sensitivity of ROMK2 in Xenopus laevis oocyte. Tanemoto M, Vanoye CG, Dong K, Welch R, Abe T, Hebert SC, Xu JZ. Am J Physiol Renal Physiol; 2000 Apr 02; 278(4):F659-66. PubMed ID: 10751228 [Abstract] [Full Text] [Related]
5. Cystic fibrosis transmembrane conductance regulator mediates sulphonylurea block of the inwardly rectifying K+ channel Kir6.1. Ishida-Takahashi A, Otani H, Takahashi C, Washizuka T, Tsuji K, Noda M, Horie M, Sasayama S. J Physiol; 1998 Apr 01; 508 ( Pt 1)(Pt 1):23-30. PubMed ID: 9490811 [Abstract] [Full Text] [Related]
6. Chloride channel and chloride conductance regulator domains of CFTR, the cystic fibrosis transmembrane conductance regulator. Schwiebert EM, Morales MM, Devidas S, Egan ME, Guggino WB. Proc Natl Acad Sci U S A; 1998 Mar 03; 95(5):2674-9. PubMed ID: 9482946 [Abstract] [Full Text] [Related]
7. PKA site mutations of ROMK2 channels shift the pH dependence to more alkaline values. Leipziger J, MacGregor GG, Cooper GJ, Xu J, Hebert SC, Giebisch G. Am J Physiol Renal Physiol; 2000 Nov 03; 279(5):F919-26. PubMed ID: 11053053 [Abstract] [Full Text] [Related]
8. Functional roles of nonconserved structural segments in CFTR's NH2-terminal nucleotide binding domain. Csanády L, Chan KW, Nairn AC, Gadsby DC. J Gen Physiol; 2005 Jan 03; 125(1):43-55. PubMed ID: 15596536 [Abstract] [Full Text] [Related]
9. Changes in voltage activation, Cs+ sensitivity, and ion permeability in H5 mutants of the plant K+ channel KAT1. Becker D, Dreyer I, Hoth S, Reid JD, Busch H, Lehnen M, Palme K, Hedrich R. Proc Natl Acad Sci U S A; 1996 Jul 23; 93(15):8123-8. PubMed ID: 8755614 [Abstract] [Full Text] [Related]
10. The first-nucleotide binding domain of the cystic-fibrosis transmembrane conductance regulator is important for inhibition of the epithelial Na+ channel. Schreiber R, Hopf A, Mall M, Greger R, Kunzelmann K. Proc Natl Acad Sci U S A; 1999 Apr 27; 96(9):5310-5. PubMed ID: 10220462 [Abstract] [Full Text] [Related]
11. Effect of ATP-sensitive K+ channel regulators on cystic fibrosis transmembrane conductance regulator chloride currents. Sheppard DN, Welsh MJ. J Gen Physiol; 1992 Oct 27; 100(4):573-91. PubMed ID: 1281220 [Abstract] [Full Text] [Related]
12. Cystic fibrosis transmembrane conductance regulator (CFTR) confers glibenclamide sensitivity to outwardly rectifying chloride channel (ORCC) in Hi-5 insect cells. Julien M, Verrier B, Cerutti M, Chappe V, Gola M, Devauchelle G, Becq F. J Membr Biol; 1999 Apr 01; 168(3):229-39. PubMed ID: 10191357 [Abstract] [Full Text] [Related]
13. An amino acid triplet in the NH2 terminus of rat ROMK1 determines interaction with SUR2B. Dong K, Xu J, Vanoye CG, Welch R, MacGregor GG, Giebisch G, Hebert SC. J Biol Chem; 2001 Nov 23; 276(47):44347-53. PubMed ID: 11567030 [Abstract] [Full Text] [Related]
14. Regulation of recombinant cardiac cystic fibrosis transmembrane conductance regulator chloride channels by protein kinase C. Yamazaki J, Britton F, Collier ML, Horowitz B, Hume JR. Biophys J; 1999 Apr 23; 76(4):1972-87. PubMed ID: 10096895 [Abstract] [Full Text] [Related]
15. Phosphorylation of the ATP-sensitive, inwardly rectifying K+ channel, ROMK, by cyclic AMP-dependent protein kinase. Xu ZC, Yang Y, Hebert SC. J Biol Chem; 1996 Apr 19; 271(16):9313-9. PubMed ID: 8621594 [Abstract] [Full Text] [Related]
16. Genistein improves regulatory interactions between G551D-cystic fibrosis transmembrane conductance regulator and the epithelial sodium channel in Xenopus oocytes. Suaud L, Carattino M, Kleyman TR, Rubenstein RC. J Biol Chem; 2002 Dec 27; 277(52):50341-7. PubMed ID: 12386156 [Abstract] [Full Text] [Related]
17. Expression of CFTR controls cAMP-dependent activation of epithelial K+ currents. Loussouarn G, Demolombe S, Mohammad-Panah R, Escande D, Baró I. Am J Physiol; 1996 Nov 27; 271(5 Pt 1):C1565-73. PubMed ID: 8944640 [Abstract] [Full Text] [Related]
18. Cystic fibrosis transmembrane conductance regulator-dependent up-regulation of Kir1.1 (ROMK) renal K+ channels by the epithelial sodium channel. Konstas AA, Koch JP, Tucker SJ, Korbmacher C. J Biol Chem; 2002 Jul 12; 277(28):25377-84. PubMed ID: 11994290 [Abstract] [Full Text] [Related]
19. Intrinsic sensitivity of Kir1.1 (ROMK) to glibenclamide in the absence of SUR2B. Implications for the identity of the renal ATP-regulated secretory K+ channel. Konstas AA, Dabrowski M, Korbmacher C, Tucker SJ. J Biol Chem; 2002 Jun 14; 277(24):21346-51. PubMed ID: 11927600 [Abstract] [Full Text] [Related]
20. Inactivating properties of recombinant ROMK2 channels expressed in mammalian cells. Riochet DF, Mohammad-Panah R, Hebert SC, MacGregor GG, Baró I, Guihard G, Escande D. Biochem Biophys Res Commun; 2001 Aug 17; 286(2):376-80. PubMed ID: 11500048 [Abstract] [Full Text] [Related] Page: [Next] [New Search]