These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
101 related items for PubMed ID: 937938
1. Accleration of an aging parameter (fluorogen) in the ocular lens. Lerman S, Kuck JF, Borkman R, Saker E. Ann Ophthalmol; 1976 May; 8(5):558-61. PubMed ID: 937938 [No Abstract] [Full Text] [Related]
2. [The fluorescence of crystalline lens homogenates from CatFr-strain mice with hereditary cataract]. Romanova LIu, Formaziuk VE, Sergienko VI. Biull Eksp Biol Med; 1989 May; 107(5):564-6. PubMed ID: 2736289 [Abstract] [Full Text] [Related]
3. Does sunlight cause premature aging of the crystalline lens? Stevens MA, Bergmanson JP. J Am Optom Assoc; 1989 Sep; 60(9):660-3. PubMed ID: 2677104 [Abstract] [Full Text] [Related]
4. Effects of near -UV irradiation on lens and aqueous humor proteins. Zigman S, Schultz JB, Yulo T, Grover D. Isr J Med Sci; 1972 Sep; 8(8):1590-5. PubMed ID: 4647825 [No Abstract] [Full Text] [Related]
5. Ultraviolet radiation in the aging and cataractous lens. A survey. Lerman S, Borkman R. Acta Ophthalmol (Copenh); 1978 Feb; 56(1):139-49. PubMed ID: 580333 [No Abstract] [Full Text] [Related]
6. Clinical evaluation of direct and photosensitized ultraviolet radiation damage to the lens. Hockwin O, Lerman S. Ann Ophthalmol; 1982 Mar; 14(3):220-3. PubMed ID: 7092032 [Abstract] [Full Text] [Related]
7. Ultraviolet light and the crystalline lens. Ann Ophthalmol; 1972 Jan; 4(1):11-2. PubMed ID: 5009989 [No Abstract] [Full Text] [Related]
8. Lens proteins and fluorescence. Lerman S. Isr J Med Sci; 1972 Jan; 8(8):1583-9. PubMed ID: 4647824 [No Abstract] [Full Text] [Related]
11. [A structural study of crystallins in the normal and cataractous crystalline lens by x-ray diffraction]. Krivandin AV, L'vov IuM, Ostrovskiĭ MA, Fedorovich IB, Feĭgin LA. Oftalmol Zh; 1989 Jan; (6):365-6. PubMed ID: 2622606 [Abstract] [Full Text] [Related]
12. [Aging of the lens and senile cataractous formation]. Yamamoto K. Nippon Ganka Gakkai Zasshi; 1973 Jan; 77(3):159-64. PubMed ID: 4737150 [No Abstract] [Full Text] [Related]
13. The endogenous and exogenous mechanisms for protection from ultraviolet irradiation in the lens. Colitz CM, Bomser JA, Kusewitt DF. Int Ophthalmol Clin; 2005 Jan; 45(1):141-55. PubMed ID: 15632531 [No Abstract] [Full Text] [Related]
14. Lens growth and protein density in the rat lens after in vivo exposure to ultraviolet radiation. Michael R, Brismar H. Invest Ophthalmol Vis Sci; 2001 Feb; 42(2):402-8. PubMed ID: 11157874 [Abstract] [Full Text] [Related]
15. Presbyopia and heat: changes associated with aging of the human lens suggest a functional role for the small heat shock protein, alpha-crystallin, in maintaining lens flexibility. Heys KR, Friedrich MG, Truscott RJ. Aging Cell; 2007 Dec; 6(6):807-15. PubMed ID: 17973972 [Abstract] [Full Text] [Related]
18. Development and repair of cataract induced by ultraviolet radiation. Michael R. Ophthalmic Res; 2000 Dec; 32 Suppl 1():ii-iii; 1-44. PubMed ID: 10817682 [Abstract] [Full Text] [Related]
19. [Aging of the crystillin]. Luyckx-Bacus J, Delmarcelle Y. Arch Ophtalmol Rev Gen Ophtalmol; 1975 Dec; 35(6-7):561-8. PubMed ID: 130884 [No Abstract] [Full Text] [Related]
20. Effects of singlet oxygen on human lens crystallins in vitro. Goosey JD, Zigler JS, Matheson IB, Kinoshita JH. Invest Ophthalmol Vis Sci; 1981 May; 20(5):679-83. PubMed ID: 7216682 [Abstract] [Full Text] [Related] Page: [Next] [New Search]