These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
121 related items for PubMed ID: 938657
1. Formation of bile acids in man. Metabolism of 7alpha-hydroxy-4-cholesten-3-one in normal subjects with an intact enterohepatic circulation. Hanson RF, Szczepanik PA, Klein PD, Johnson EA, Williams GC. Biochim Biophys Acta; 1976 May 27; 431(2):335-46. PubMed ID: 938657 [Abstract] [Full Text] [Related]
2. Transformation of 4-cholesten-3-one and 7 alpha-hydroxy-4-cholesten-3-one into cholestanol and bile acids in cerebrotendinous xanthomatosis. Salen G, Shefer S, Tint GS. Gastroenterology; 1984 Aug 27; 87(2):276-83. PubMed ID: 6735073 [Abstract] [Full Text] [Related]
3. Bile acid biosynthesis: the metabolism of 7 alpha-hydroxy-4-cholesten-3-one in the bile fistula rat. Sherman CA, Hanson RF. Steroids; 1976 Feb 27; 27(2):145-53. PubMed ID: 1273883 [No Abstract] [Full Text] [Related]
4. An in vivo evaluation of the quantitative significance of several potential pathways to cholic and chenodeoxycholic acids from cholesterol in man. Swell L, Gustafsson J, Schwartz CC, Halloran LG, Danielsson H, Vlahcevic ZR. J Lipid Res; 1980 May 27; 21(4):455-66. PubMed ID: 7381336 [Abstract] [Full Text] [Related]
5. Potential bile acid precursors in plasma--possible indicators of biosynthetic pathways to cholic and chenodeoxycholic acids in man. Axelson M, Sjövall J. J Steroid Biochem; 1990 Aug 28; 36(6):631-40. PubMed ID: 2214780 [Abstract] [Full Text] [Related]
6. In vivo and vitro studies on formation of bile acids in patients with Zellweger syndrome. Evidence that peroxisomes are of importance in the normal biosynthesis of both cholic and chenodeoxycholic acid. Kase BF, Pedersen JI, Strandvik B, Björkhem I. J Clin Invest; 1985 Dec 28; 76(6):2393-402. PubMed ID: 4077985 [Abstract] [Full Text] [Related]
7. Bile acid formation in man: metabolism of 7 -hydroxy-4-cholesten-3-one in bile fistula patients. Hanson RF, Klein PD, Williams GC. J Lipid Res; 1973 Jan 28; 14(1):50-3. PubMed ID: 4701553 [Abstract] [Full Text] [Related]
8. Metabolism of potential precursors of chenodeoxycholic acid in cerebrotendinous xanthomatosis (CTX). Salen G, Shefer S, Mosbach EH, Hauser S, Cohen BI, Nicolau G. J Lipid Res; 1979 Jan 28; 20(1):22-30. PubMed ID: 438653 [Abstract] [Full Text] [Related]
9. Effects of treatment with deoxycholic acid and chenodeoxycholic acid on the hepatic synthesis of cholesterol and bile acids in healthy subjects. Einarsson C, Hillebrant CG, Axelson M. Hepatology; 2001 May 28; 33(5):1189-93. PubMed ID: 11343248 [Abstract] [Full Text] [Related]
10. Enterohepatic circulation rates of cholic acid and chenodeoxycholic acid in man. Einarsson KA, Gundy SM, Hardison WG. Gut; 1979 Dec 28; 20(12):1078-82. PubMed ID: 527882 [Abstract] [Full Text] [Related]
11. An efficient synthesis of 7α,12α-dihydroxy-4-cholesten-3-one and its biological precursor 7α-hydroxy-4-cholesten-3-one: Key intermediates in bile acid biosynthesis. Ogawa S, Zhou B, Kimoto Y, Omura K, Kobayashi A, Higashi T, Mitamura K, Ikegawa S, Hagey LR, Hofmann AF, Iida T. Steroids; 2013 Sep 28; 78(9):927-37. PubMed ID: 23707572 [Abstract] [Full Text] [Related]
12. A quantitative evaluation of the conversion of 25-hydroxycholesterol to bile acids in man. Swell L, Schwartz CC, Gustafsson J, Danielsson H, Vlahcevic ZR. Biochim Biophys Acta; 1981 Jan 26; 663(1):163-8. PubMed ID: 7011410 [Abstract] [Full Text] [Related]
13. Bile acid synthesis in cultured human hepatocytes: support for an alternative biosynthetic pathway to cholic acid. Axelson M, Ellis E, Mörk B, Garmark K, Abrahamsson A, Björkhem I, Ericzon BG, Einarsson C. Hepatology; 2000 Jun 26; 31(6):1305-12. PubMed ID: 10827156 [Abstract] [Full Text] [Related]
14. Metabolism of 3alpha, 7alpha, 12alpha-trihydroxy-5beta-cholestan-26-oic acid in normal subjects with an intact enterohepatic circulation. Hanson RF, Williams GC. J Lipid Res; 1977 Sep 26; 18(5):656-9. PubMed ID: 903710 [Abstract] [Full Text] [Related]
15. 7alpha-Dehydroxylation of cholic acid and chenodeoxycholic acid by Clostridium leptum. Stellwag EJ, Hylemon PB. J Lipid Res; 1979 Mar 26; 20(3):325-33. PubMed ID: 36438 [Abstract] [Full Text] [Related]
16. Studies on the 12alpha and 26-hydroxylation of bile alcohols by rabbit liver microsomes. Nicolau G, Cohen BI, Salen G, Mosbach EH. Lipids; 1976 Feb 26; 11(2):148-52. PubMed ID: 814378 [Abstract] [Full Text] [Related]
17. The ileal bile acid transporter inhibitor A4250 decreases serum bile acids by interrupting the enterohepatic circulation. Graffner H, Gillberg PG, Rikner L, Marschall HU. Aliment Pharmacol Ther; 2016 Jan 26; 43(2):303-10. PubMed ID: 26527417 [Abstract] [Full Text] [Related]
18. Identification of human hepatic cytochrome p450 enzymes involved in the biotransformation of cholic and chenodeoxycholic acid. Deo AK, Bandiera SM. Drug Metab Dispos; 2008 Oct 26; 36(10):1983-91. PubMed ID: 18583509 [Abstract] [Full Text] [Related]
19. Biosynthesis of bile acids in cerebrotendinous xanthomatosis. Relationship of bile acid pool sizes and synthesis rates to hydroxylations at C-12, C-25, and C-26. Salen G, Shefer S, Tint GS, Nicolau G, Dayal B, Batta AK. J Clin Invest; 1985 Aug 26; 76(2):744-51. PubMed ID: 4031069 [Abstract] [Full Text] [Related]
20. Bile acid synthesis. Metabolism of 3 beta-hydroxy-5-cholenoic acid to chenodeoxycholic acid. Javitt NB, Kok E, Carubbi F, Blizzard T, Gut M, Byon CY. J Biol Chem; 1986 Sep 25; 261(27):12486-9. PubMed ID: 3745201 [Abstract] [Full Text] [Related] Page: [Next] [New Search]