These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
314 related items for PubMed ID: 9389750
1. Vitamin C crosses the blood-brain barrier in the oxidized form through the glucose transporters. Agus DB, Gambhir SS, Pardridge WM, Spielholz C, Baselga J, Vera JC, Golde DW. J Clin Invest; 1997 Dec 01; 100(11):2842-8. PubMed ID: 9389750 [Abstract] [Full Text] [Related]
2. Increased facilitated transport of dehydroascorbic acid without changes in sodium-dependent ascorbate transport in human melanoma cells. Spielholz C, Golde DW, Houghton AN, Nualart F, Vera JC. Cancer Res; 1997 Jun 15; 57(12):2529-37. PubMed ID: 9192836 [Abstract] [Full Text] [Related]
3. Vitamin C uptake and recycling among normal and tumor cells from the central nervous system. Astuya A, Caprile T, Castro M, Salazar K, García Mde L, Reinicke K, Rodríguez F, Vera JC, Millán C, Ulloa V, Low M, Martínez F, Nualart F. J Neurosci Res; 1997 Jun 15; 79(1-2):146-56. PubMed ID: 15578707 [Abstract] [Full Text] [Related]
4. Deficient transport of dehydroascorbic acid in the glucose transporter protein syndrome. Klepper J, Vera JC, De Vivo DC. Ann Neurol; 1998 Aug 15; 44(2):286-7. PubMed ID: 9708557 [Abstract] [Full Text] [Related]
5. Stromal cell oxidation: a mechanism by which tumors obtain vitamin C. Agus DB, Vera JC, Golde DW. Cancer Res; 1999 Sep 15; 59(18):4555-8. PubMed ID: 10493506 [Abstract] [Full Text] [Related]
6. Mammalian facilitative hexose transporters mediate the transport of dehydroascorbic acid. Vera JC, Rivas CI, Fischbarg J, Golde DW. Nature; 1993 Jul 01; 364(6432):79-82. PubMed ID: 8316303 [Abstract] [Full Text] [Related]
7. Vitamin C transport in oxidized form across the rat blood-retinal barrier. Hosoya K, Minamizono A, Katayama K, Terasaki T, Tomi M. Invest Ophthalmol Vis Sci; 2004 Apr 01; 45(4):1232-9. PubMed ID: 15037592 [Abstract] [Full Text] [Related]
8. Human HL-60 myeloid leukemia cells transport dehydroascorbic acid via the glucose transporters and accumulate reduced ascorbic acid. Vera JC, Rivas CI, Zhang RH, Farber CM, Golde DW. Blood; 1994 Sep 01; 84(5):1628-34. PubMed ID: 8068952 [Abstract] [Full Text] [Related]
9. Up-regulation and polarized expression of the sodium-ascorbic acid transporter SVCT1 in post-confluent differentiated CaCo-2 cells. Maulén NP, Henríquez EA, Kempe S, Cárcamo JG, Schmid-Kotsas A, Bachem M, Grünert A, Bustamante ME, Nualart F, Vera JC. J Biol Chem; 2003 Mar 14; 278(11):9035-41. PubMed ID: 12381735 [Abstract] [Full Text] [Related]
10. Intracellular accumulation of ascorbic acid is inhibited by flavonoids via blocking of dehydroascorbic acid and ascorbic acid uptakes in HL-60, U937 and Jurkat cells. Park JB, Levine M. J Nutr; 2000 May 14; 130(5):1297-302. PubMed ID: 10801933 [Abstract] [Full Text] [Related]
11. Resolution of the facilitated transport of dehydroascorbic acid from its intracellular accumulation as ascorbic acid. Vera JC, Rivas CI, Velásquez FV, Zhang RH, Concha II, Golde DW. J Biol Chem; 1995 Oct 06; 270(40):23706-12. PubMed ID: 7559541 [Abstract] [Full Text] [Related]
12. 6-Bromo-6-deoxy-L-ascorbic acid: an ascorbate analog specific for Na+-dependent vitamin C transporter but not glucose transporter pathways. Corpe CP, Lee JH, Kwon O, Eck P, Narayanan J, Kirk KL, Levine M. J Biol Chem; 2005 Feb 18; 280(7):5211-20. PubMed ID: 15590689 [Abstract] [Full Text] [Related]
13. Human choroid plexus papilloma cells efficiently transport glucose and vitamin C. Ulloa V, García-Robles M, Martínez F, Salazar K, Reinicke K, Pérez F, Godoy DF, Godoy AS, Nualart F. J Neurochem; 2013 Nov 18; 127(3):403-14. PubMed ID: 23647458 [Abstract] [Full Text] [Related]
14. Vitamin C enters mitochondria via facilitative glucose transporter 1 (Glut1) and confers mitochondrial protection against oxidative injury. KC S, Cárcamo JM, Golde DW. FASEB J; 2005 Oct 18; 19(12):1657-67. PubMed ID: 16195374 [Abstract] [Full Text] [Related]
15. Cerebral astrocytes transport ascorbic acid and dehydroascorbic acid through distinct mechanisms regulated by cyclic AMP. Siushansian R, Tao L, Dixon SJ, Wilson JX. J Neurochem; 1997 Jun 18; 68(6):2378-85. PubMed ID: 9166731 [Abstract] [Full Text] [Related]
16. Dehydroascorbic Acid Promotes Cell Death in Neurons Under Oxidative Stress: a Protective Role for Astrocytes. García-Krauss A, Ferrada L, Astuya A, Salazar K, Cisternas P, Martínez F, Ramírez E, Nualart F. Mol Neurobiol; 2016 Nov 18; 53(9):5847-5863. PubMed ID: 26497038 [Abstract] [Full Text] [Related]
17. Transport of vitamin C in animal and human cells. Goldenberg H, Schweinzer E. J Bioenerg Biomembr; 1994 Aug 18; 26(4):359-67. PubMed ID: 7844110 [Abstract] [Full Text] [Related]
18. Hormone-regulated and glucose-sensitive transport of dehydroascorbic acid in immature rat granulosa cells. Kodaman PH, Behrman HR. Endocrinology; 1999 Aug 18; 140(8):3659-65. PubMed ID: 10433224 [Abstract] [Full Text] [Related]
19. Identification of Structural Determinants of the Transport of the Dehydroascorbic Acid Mediated by Glucose Transport GLUT1. Villagrán M, Burgos CF, Rivas CI, Mardones L. Molecules; 2023 Jan 05; 28(2):. PubMed ID: 36677580 [Abstract] [Full Text] [Related]
20. L-dehydroascorbic acid can substitute l-ascorbic acid as dietary vitamin C source in guinea pigs. Frikke-Schmidt H, Tveden-Nyborg P, Lykkesfeldt J. Redox Biol; 2016 Apr 05; 7():8-13. PubMed ID: 26609560 [Abstract] [Full Text] [Related] Page: [Next] [New Search]