These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


163 related items for PubMed ID: 9391018

  • 41. Amiloride-Insensitive Salt Taste Is Mediated by Two Populations of Type III Taste Cells with Distinct Transduction Mechanisms.
    Lewandowski BC, Sukumaran SK, Margolskee RF, Bachmanov AA.
    J Neurosci; 2016 Feb 10; 36(6):1942-53. PubMed ID: 26865617
    [Abstract] [Full Text] [Related]

  • 42. Amiloride-sensitive epithelial Na+ channel currents in surface cells of rat rectal colon.
    Inagaki A, Yamaguchi S, Ishikawa T.
    Am J Physiol Cell Physiol; 2004 Feb 10; 286(2):C380-90. PubMed ID: 14576089
    [Abstract] [Full Text] [Related]

  • 43. Effects of dietary Na+ deprivation on epithelial Na+ channel (ENaC), BDNF, and TrkB mRNA expression in the rat tongue.
    Huang T, Stähler F.
    BMC Neurosci; 2009 Mar 12; 10():19. PubMed ID: 19284620
    [Abstract] [Full Text] [Related]

  • 44. Differential expression of RNA and protein of the three pore-forming subunits of the amiloride-sensitive epithelial sodium channel in taste buds of the rat.
    Kretz O, Barbry P, Bock R, Lindemann B.
    J Histochem Cytochem; 1999 Jan 12; 47(1):51-64. PubMed ID: 9857212
    [Abstract] [Full Text] [Related]

  • 45. Optogenetic Stimulation of Type I GAD65+ Cells in Taste Buds Activates Gustatory Neurons and Drives Appetitive Licking Behavior in Sodium-Depleted Mice.
    Baumer-Harrison C, Raymond MA, Myers TA, Sussman KM, Rynberg ST, Ugartechea AP, Lauterbach D, Mast TG, Breza JM.
    J Neurosci; 2020 Oct 07; 40(41):7795-7810. PubMed ID: 32878902
    [Abstract] [Full Text] [Related]

  • 46. Re-evaluating the Na(+) conductance of adult rat alveolar type II pneumocytes: evidence for the involvement of cGMP-activated cation channels.
    Kemp PJ, Kim KJ, Borok Z, Crandall ED.
    J Physiol; 2001 Nov 01; 536(Pt 3):693-701. PubMed ID: 11691865
    [Abstract] [Full Text] [Related]

  • 47. Expression of amiloride-sensitive epithelial sodium channels in mouse taste cells after chorda tympani nerve crush.
    Shigemura N, Islam AA, Sadamitsu C, Yoshida R, Yasumatsu K, Ninomiya Y.
    Chem Senses; 2005 Jul 01; 30(6):531-8. PubMed ID: 16030075
    [Abstract] [Full Text] [Related]

  • 48. Enhancement of gustatory nerve fibers to NaCl and formation of ion channels by commercial novobiocin.
    Feigin AM, Ninomiya Y, Bezrukov SM, Bryant BP, Moore PA, Komai M, Wachowiak M, Teeter JH, Vodyanoy I, Brand JG.
    Am J Physiol; 1994 May 01; 266(5 Pt 1):C1165-72. PubMed ID: 7515563
    [Abstract] [Full Text] [Related]

  • 49. Inflammatory stimuli acutely modulate peripheral taste function.
    Kumarhia D, He L, McCluskey LP.
    J Neurophysiol; 2016 Jun 01; 115(6):2964-75. PubMed ID: 27009163
    [Abstract] [Full Text] [Related]

  • 50. Neural representation of salts in the rat solitary nucleus: brain stem correlates of taste discrimination.
    St John SJ, Smith DV.
    J Neurophysiol; 2000 Aug 01; 84(2):628-38. PubMed ID: 10938291
    [Abstract] [Full Text] [Related]

  • 51. Role of apical ion channels in sour taste transduction.
    Kinnamon SC.
    Ciba Found Symp; 1993 Aug 01; 179():201-10; discussion 210-7. PubMed ID: 7513271
    [Abstract] [Full Text] [Related]

  • 52. Acidic stimuli activates two distinct pathways in taste receptor cells from rat fungiform papillae.
    Liu L, Simon SA.
    Brain Res; 2001 Dec 27; 923(1-2):58-70. PubMed ID: 11743973
    [Abstract] [Full Text] [Related]

  • 53. All-Electrical Ca2+-Independent Signal Transduction Mediates Attractive Sodium Taste in Taste Buds.
    Nomura K, Nakanishi M, Ishidate F, Iwata K, Taruno A.
    Neuron; 2020 Jun 03; 106(5):816-829.e6. PubMed ID: 32229307
    [Abstract] [Full Text] [Related]

  • 54. Direct measurement of translingual epithelial NaCl and KCl currents during the chorda tympani taste response.
    Heck GL, Persaud KC, DeSimone JA.
    Biophys J; 1989 May 03; 55(5):843-57. PubMed ID: 2541822
    [Abstract] [Full Text] [Related]

  • 55. Membrane excitability of wing and rod cells in frog taste discs following denervation.
    Okuda-Akabane K, Fukami H, Narita K, Kitada Y.
    Brain Res; 2006 Aug 04; 1103(1):145-9. PubMed ID: 16787642
    [Abstract] [Full Text] [Related]

  • 56. Effects of voltage perturbation of the lingual receptive field on chorda tympani responses to Na+ and K+ salts in the rat: implications for gustatory transduction.
    Ye Q, Heck GL, DeSimone JA.
    J Gen Physiol; 1994 Nov 04; 104(5):885-907. PubMed ID: 7876827
    [Abstract] [Full Text] [Related]

  • 57. Modeling and simulation of ion channels and action potentials in taste receptor cells.
    Chen P, Liu XD, Zhang W, Zhou J, Wang P, Yang W, Luo J.
    Sci China C Life Sci; 2009 Nov 04; 52(11):1036-47. PubMed ID: 19937202
    [Abstract] [Full Text] [Related]

  • 58. Electrophysiologically identified subpopulations of taste bud cells.
    Romanov RA, Kolesnikov SS.
    Neurosci Lett; 2006 Mar 13; 395(3):249-54. PubMed ID: 16309836
    [Abstract] [Full Text] [Related]

  • 59. Differential transduction mechanisms underlying NaCl- and KCl-induced responses in mouse taste cells.
    Miyamoto T, Miyazaki T, Fujiyama R, Okada Y, Sato T.
    Chem Senses; 2001 Jan 13; 26(1):67-77. PubMed ID: 11124217
    [Abstract] [Full Text] [Related]

  • 60. ENaC-Dependent Sodium Chloride Taste Responses in the Regenerated Rat Chorda Tympani Nerve After Lingual Gustatory Deafferentation Depend on the Taste Bud Field Reinnervated.
    Jiang E, Blonde GD, Garcea M, Spector AC.
    Chem Senses; 2020 May 21; 45(4):249-259. PubMed ID: 32154568
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 9.