These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
112 related items for PubMed ID: 9398277
1. Kinetic and spectroscopic investigations of wild-type and mutant forms of apple 1-aminocyclopropane-1-carboxylate synthase. Li Y, Feng L, Kirsch JF. Biochemistry; 1997 Dec 09; 36(49):15477-88. PubMed ID: 9398277 [Abstract] [Full Text] [Related]
2. The imine-pyridine torsion of the pyridoxal 5'-phosphate Schiff base of aspartate aminotransferase lowers its pKa in the unliganded enzyme and is crucial for the successive increase in the pKa during catalysis. Hayashi H, Mizuguchi H, Kagamiyama H. Biochemistry; 1998 Oct 27; 37(43):15076-85. PubMed ID: 9790670 [Abstract] [Full Text] [Related]
3. Noncoded amino acid replacement probes of the aspartate aminotransferase mechanism. Park Y, Luo J, Schultz PG, Kirsch JF. Biochemistry; 1997 Aug 26; 36(34):10517-25. PubMed ID: 9265632 [Abstract] [Full Text] [Related]
4. 4-Oxalocrotonate tautomerase: pH dependence of catalysis and pKa values of active site residues. Stivers JT, Abeygunawardana C, Mildvan AS, Hajipour G, Whitman CP. Biochemistry; 1996 Jan 23; 35(3):814-23. PubMed ID: 8547261 [Abstract] [Full Text] [Related]
5. Porcine recombinant dihydropyrimidine dehydrogenase: comparison of the spectroscopic and catalytic properties of the wild-type and C671A mutant enzymes. Rosenbaum K, Jahnke K, Curti B, Hagen WR, Schnackerz KD, Vanoni MA. Biochemistry; 1998 Dec 15; 37(50):17598-609. PubMed ID: 9860876 [Abstract] [Full Text] [Related]
6. Structure, mechanism, and conformational dynamics of O-acetylserine sulfhydrylase from Salmonella typhimurium: comparison of A and B isozymes. Chattopadhyay A, Meier M, Ivaninskii S, Burkhard P, Speroni F, Campanini B, Bettati S, Mozzarelli A, Rabeh WM, Li L, Cook PF. Biochemistry; 2007 Jul 17; 46(28):8315-30. PubMed ID: 17583914 [Abstract] [Full Text] [Related]
7. Mechanistic roles of tyrosine 149 and serine 124 in UDP-galactose 4-epimerase from Escherichia coli. Liu Y, Thoden JB, Kim J, Berger E, Gulick AM, Ruzicka FJ, Holden HM, Frey PA. Biochemistry; 1997 Sep 02; 36(35):10675-84. PubMed ID: 9271498 [Abstract] [Full Text] [Related]
8. Conserved and nonconserved residues in the substrate binding site of 7,8-diaminopelargonic acid synthase from Escherichia coli are essential for catalysis. Sandmark J, Eliot AC, Famm K, Schneider G, Kirsch JF. Biochemistry; 2004 Feb 10; 43(5):1213-22. PubMed ID: 14756557 [Abstract] [Full Text] [Related]
9. Modulation of the internal aldimine pK(a)'s of 1-aminocyclopropane-1-carboxylate synthase and aspartate aminotransferase by specific active site residues. Eliot AC, Kirsch JF. Biochemistry; 2002 Mar 19; 41(11):3836-42. PubMed ID: 11888303 [Abstract] [Full Text] [Related]
10. Catalytic mechanism of scytalone dehydratase: site-directed mutagenisis, kinetic isotope effects, and alternate substrates. Basarab GS, Steffens JJ, Wawrzak Z, Schwartz RS, Lundqvist T, Jordan DB. Biochemistry; 1999 May 11; 38(19):6012-24. PubMed ID: 10320327 [Abstract] [Full Text] [Related]
11. Mutation of cysteine 111 in Dopa decarboxylase leads to active site perturbation. Dominici P, Moore PS, Castellani S, Bertoldi M, Voltattorni CB. Protein Sci; 1997 Sep 11; 6(9):2007-15. PubMed ID: 9300500 [Abstract] [Full Text] [Related]
12. Site-directed mutagenesis of the active site glutamate in human matrilysin: investigation of its role in catalysis. Cha J, Auld DS. Biochemistry; 1997 Dec 16; 36(50):16019-24. PubMed ID: 9398337 [Abstract] [Full Text] [Related]
13. Studies of the enzymic mechanism of Candida tenuis xylose reductase (AKR 2B5): X-ray structure and catalytic reaction profile for the H113A mutant. Kratzer R, Kavanagh KL, Wilson DK, Nidetzky B. Biochemistry; 2004 May 04; 43(17):4944-54. PubMed ID: 15109252 [Abstract] [Full Text] [Related]
14. Substrate activation by acyl-CoA dehydrogenases: transition-state stabilization and pKs of involved functional groups. Vock P, Engst S, Eder M, Ghisla S. Biochemistry; 1998 Feb 17; 37(7):1848-60. PubMed ID: 9485310 [Abstract] [Full Text] [Related]
16. pH studies on the mechanism of the pyridoxal phosphate-dependent dialkylglycine decarboxylase. Zhou X, Toney MD. Biochemistry; 1999 Jan 05; 38(1):311-20. PubMed ID: 9890912 [Abstract] [Full Text] [Related]
17. Expression of apple 1-aminocyclopropane-1-carboxylate synthase in Escherichia coli: kinetic characterization of wild-type and active-site mutant forms. White MF, Vasquez J, Yang SF, Kirsch JF. Proc Natl Acad Sci U S A; 1994 Dec 20; 91(26):12428-32. PubMed ID: 7809054 [Abstract] [Full Text] [Related]
18. The reaction catalyzed by Escherichia coli aspartate aminotransferase has multiple partially rate-determining steps, while that catalyzed by the Y225F mutant is dominated by ketimine hydrolysis. Goldberg JM, Kirsch JF. Biochemistry; 1996 Apr 23; 35(16):5280-91. PubMed ID: 8611515 [Abstract] [Full Text] [Related]
19. Glutamate 47 in 1-aminocyclopropane-1-carboxylate synthase is a major specificity determinant. McCarthy DL, Capitani G, Feng L, Gruetter MG, Kirsch JF. Biochemistry; 2001 Oct 16; 40(41):12276-84. PubMed ID: 11591146 [Abstract] [Full Text] [Related]
20. Cysteine 42 is important for maintaining an integral active site for O-acetylserine sulfhydrylase resulting in the stabilization of the alpha-aminoacrylate intermediate. Tai CH, Yoon MY, Kim SK, Rege VD, Nalabolu SR, Kredich NM, Schnackerz KD, Cook PF. Biochemistry; 1998 Jul 28; 37(30):10597-604. PubMed ID: 9692949 [Abstract] [Full Text] [Related] Page: [Next] [New Search]