These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
316 related items for PubMed ID: 9401587
21. Mitochondrial ATP production rate in 55 to 73-year-old men: effect of endurance training. Berthon P, Freyssenet D, Chatard JC, Castells J, Mujika I, Geyssant A, Guezennec CY, Denis C. Acta Physiol Scand; 1995 Jun; 154(2):269-74. PubMed ID: 7572222 [Abstract] [Full Text] [Related]
22. Training-induced acceleration of oxygen uptake kinetics in skeletal muscle: the underlying mechanisms. Zoladz JA, Korzeniewski B, Grassi B. J Physiol Pharmacol; 2006 Nov; 57 Suppl 10():67-84. PubMed ID: 17242492 [Abstract] [Full Text] [Related]
23. Effect of endurance training on oxidative and antioxidative function in human permeabilized muscle fibres. Walsh B, Tonkonogi M, Sahlin K. Pflugers Arch; 2001 Jun; 442(3):420-5. PubMed ID: 11484774 [Abstract] [Full Text] [Related]
24. Effects of intermittent hypoxic training on amino and fatty acid oxidative combustion in human permeabilized muscle fibers. Roels B, Thomas C, Bentley DJ, Mercier J, Hayot M, Millet G. J Appl Physiol (1985); 2007 Jan; 102(1):79-86. PubMed ID: 16990498 [Abstract] [Full Text] [Related]
25. Effect of eccentric versus concentric exercise training on mitochondrial function. Isner-Horobeti ME, Rasseneur L, Lonsdorfer-Wolf E, Dufour SP, Doutreleau S, Bouitbir J, Zoll J, Kapchinsky S, Geny B, Daussin FN, Burelle Y, Richard R. Muscle Nerve; 2014 Nov; 50(5):803-11. PubMed ID: 24639213 [Abstract] [Full Text] [Related]
26. Relationships between maximal muscle oxidative capacity and blood lactate removal after supramaximal exercise and fatigue indexes in humans. Thomas C, Sirvent P, Perrey S, Raynaud E, Mercier J. J Appl Physiol (1985); 2004 Dec; 97(6):2132-8. PubMed ID: 15208291 [Abstract] [Full Text] [Related]
27. Skeletal muscle oxidative capacity, fiber type, and metabolites after lung transplantation. Wang XN, Williams TJ, McKenna MJ, Li JL, Fraser SF, Side EA, Snell GI, Walters EH, Carey MF. Am J Respir Crit Care Med; 1999 Jul; 160(1):57-63. PubMed ID: 10390380 [Abstract] [Full Text] [Related]
28. Quantitative and qualitative adaptation of human skeletal muscle mitochondria to hypoxic compared with normoxic training at the same relative work rate. Bakkman L, Sahlin K, Holmberg HC, Tonkonogi M. Acta Physiol (Oxf); 2007 Jul; 190(3):243-51. PubMed ID: 17521315 [Abstract] [Full Text] [Related]
29. Whole-body fat oxidation determined by graded exercise and indirect calorimetry: a role for muscle oxidative capacity? Nordby P, Saltin B, Helge JW. Scand J Med Sci Sports; 2006 Jun; 16(3):209-14. PubMed ID: 16643200 [Abstract] [Full Text] [Related]
30. Maintained peak leg and pulmonary VO2 despite substantial reduction in muscle mitochondrial capacity. Boushel R, Gnaiger E, Larsen FJ, Helge JW, González-Alonso J, Ara I, Munch-Andersen T, van Hall G, Søndergaard H, Saltin B, Calbet JA. Scand J Med Sci Sports; 2015 Dec; 25 Suppl 4():135-43. PubMed ID: 26589127 [Abstract] [Full Text] [Related]
31. Symmorphosis and skeletal muscle V̇O2 max : in vivo and in vitro measures reveal differing constraints in the exercise-trained and untrained human. Gifford JR, Garten RS, Nelson AD, Trinity JD, Layec G, Witman MA, Weavil JC, Mangum T, Hart C, Etheredge C, Jessop J, Bledsoe A, Morgan DE, Wray DW, Rossman MJ, Richardson RS. J Physiol; 2016 Mar 15; 594(6):1741-51. PubMed ID: 26614395 [Abstract] [Full Text] [Related]
32. Sodium bicarbonate ingestion prior to training improves mitochondrial adaptations in rats. Bishop DJ, Thomas C, Moore-Morris T, Tonkonogi M, Sahlin K, Mercier J. Am J Physiol Endocrinol Metab; 2010 Aug 15; 299(2):E225-33. PubMed ID: 20484007 [Abstract] [Full Text] [Related]
33. Mitochondrial respiration is decreased in skeletal muscle of patients with type 2 diabetes. Mogensen M, Sahlin K, Fernström M, Glintborg D, Vind BF, Beck-Nielsen H, Højlund K. Diabetes; 2007 Jun 15; 56(6):1592-9. PubMed ID: 17351150 [Abstract] [Full Text] [Related]
35. Adenosine Triphosphate Production of Muscle Mitochondria after Acute Exercise in Lean and Obese Humans. Kras KA, Hoffman N, Roust LR, Benjamin TR, DE Filippis EA, Katsanos CS. Med Sci Sports Exerc; 2019 Mar 15; 51(3):445-453. PubMed ID: 30363008 [Abstract] [Full Text] [Related]
36. Mitochondrial function during heavy exercise. Willis WT, Jackman MR. Med Sci Sports Exerc; 1994 Nov 15; 26(11):1347-53. PubMed ID: 7837955 [Abstract] [Full Text] [Related]
37. The influence of age and aerobic fitness: effects on mitochondrial respiration in skeletal muscle. Larsen S, Hey-Mogensen M, Rabøl R, Stride N, Helge JW, Dela F. Acta Physiol (Oxf); 2012 Jul 15; 205(3):423-32. PubMed ID: 22212519 [Abstract] [Full Text] [Related]
38. Control of skeletal muscle mitochondria respiration by adenine nucleotides: differential effect of ADP and ATP according to muscle contractile type in pigs. Gueguen N, Lefaucheur L, Fillaut M, Vincent A, Herpin P. Comp Biochem Physiol B Biochem Mol Biol; 2005 Feb 15; 140(2):287-97. PubMed ID: 15649776 [Abstract] [Full Text] [Related]
39. Enzyme activities in the tibialis anterior muscle of young moderately active men and women: relationship with body composition, muscle cross-sectional area and fibre type composition. Jaworowski A, Porter MM, Holmbäck AM, Downham D, Lexell J. Acta Physiol Scand; 2002 Nov 15; 176(3):215-25. PubMed ID: 12392501 [Abstract] [Full Text] [Related]
40. Carbohydrate ingestion prior to exercise augments the exercise-induced activation of the pyruvate dehydrogenase complex in human skeletal muscle. Tsintzas K, Williams C, Constantin-Teodosiu D, Hultman E, Boobis L, Greenhaff P. Exp Physiol; 2000 Sep 15; 85(5):581-6. PubMed ID: 11038410 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]