These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


374 related items for PubMed ID: 9414222

  • 1. The mechanism of lamellar-to-inverted hexagonal phase transitions in phosphatidylethanolamine: implications for membrane fusion mechanisms.
    Siegel DP, Epand RM.
    Biophys J; 1997 Dec; 73(6):3089-111. PubMed ID: 9414222
    [Abstract] [Full Text] [Related]

  • 2. The modified stalk mechanism of lamellar/inverted phase transitions and its implications for membrane fusion.
    Siegel DP.
    Biophys J; 1999 Jan; 76(1 Pt 1):291-313. PubMed ID: 9876142
    [Abstract] [Full Text] [Related]

  • 3. Inverted micellar intermediates and the transitions between lamellar, cubic, and inverted hexagonal lipid phases. II. Implications for membrane-membrane interactions and membrane fusion.
    Siegel DP.
    Biophys J; 1986 Jun; 49(6):1171-83. PubMed ID: 3719075
    [Abstract] [Full Text] [Related]

  • 4. Energetics of intermediates in membrane fusion: comparison of stalk and inverted micellar intermediate mechanisms.
    Siegel DP.
    Biophys J; 1993 Nov; 65(5):2124-40. PubMed ID: 8298039
    [Abstract] [Full Text] [Related]

  • 5. Effect of influenza hemagglutinin fusion peptide on lamellar/inverted phase transitions in dipalmitoleoylphosphatidylethanolamine: implications for membrane fusion mechanisms.
    Siegel DP, Epand RM.
    Biochim Biophys Acta; 2000 Sep 29; 1468(1-2):87-98. PubMed ID: 11018654
    [Abstract] [Full Text] [Related]

  • 6. Membrane fusion and the lamellar-to-inverted-hexagonal phase transition in cardiolipin vesicle systems induced by divalent cations.
    Ortiz A, Killian JA, Verkleij AJ, Wilschut J.
    Biophys J; 1999 Oct 29; 77(4):2003-14. PubMed ID: 10512820
    [Abstract] [Full Text] [Related]

  • 7. A differential scanning calorimetric and 31P NMR spectroscopic study of the effect of transmembrane alpha-helical peptides on the lamellar-reversed hexagonal phase transition of phosphatidylethanolamine model membranes.
    Liu F, Lewis RN, Hodges RS, McElhaney RN.
    Biochemistry; 2001 Jan 23; 40(3):760-8. PubMed ID: 11170393
    [Abstract] [Full Text] [Related]

  • 8. Modulation of lipid polymorphism by the feline leukemia virus fusion peptide: implications for the fusion mechanism.
    Davies SM, Epand RF, Bradshaw JP, Epand RM.
    Biochemistry; 1998 Apr 21; 37(16):5720-9. PubMed ID: 9548958
    [Abstract] [Full Text] [Related]

  • 9. Proton induced vesicle fusion and the isothermal lalpha-->HII phase transition of lipid bilayers: a 31P-NMR and titration calorimetry study.
    Wenk MR, Seelig J.
    Biochim Biophys Acta; 1998 Jul 17; 1372(2):227-36. PubMed ID: 9675291
    [Abstract] [Full Text] [Related]

  • 10. Calorimetric and spectroscopic studies of the polymorphic phase behavior of a homologous series of n-saturated 1,2-diacyl phosphatidylethanolamines.
    Lewis RN, McElhaney RN.
    Biophys J; 1993 Apr 17; 64(4):1081-96. PubMed ID: 8494972
    [Abstract] [Full Text] [Related]

  • 11. The mechanism of lamellar-to-inverted hexagonal phase transitions: a study using temperature-jump cryo-electron microscopy.
    Siegel DP, Green WJ, Talmon Y.
    Biophys J; 1994 Feb 17; 66(2 Pt 1):402-14. PubMed ID: 8161694
    [Abstract] [Full Text] [Related]

  • 12. Different effects of long- and short-chain ceramides on the gel-fluid and lamellar-hexagonal transitions of phospholipids: a calorimetric, NMR, and x-ray diffraction study.
    Sot J, Aranda FJ, Collado MI, Goñi FM, Alonso A.
    Biophys J; 2005 May 17; 88(5):3368-80. PubMed ID: 15695626
    [Abstract] [Full Text] [Related]

  • 13. Diacylglycerol and the promotion of lamellar-hexagonal and lamellar-isotropic phase transitions in lipids: implications for membrane fusion.
    Basanez G, Nieva JL, Rivas E, Alonso A, Goni FM.
    Biophys J; 1996 May 17; 70(5):2299-306. PubMed ID: 9172753
    [Abstract] [Full Text] [Related]

  • 14. Effect of single chain lipids on phospholipase C-promoted vesicle fusion. A test for the stalk hypothesis of membrane fusion.
    Basáñez G, Goñi FM, Alonso A.
    Biochemistry; 1998 Mar 17; 37(11):3901-8. PubMed ID: 9521711
    [Abstract] [Full Text] [Related]

  • 15. Transmembrane peptides stabilize inverted cubic phases in a biphasic length-dependent manner: implications for protein-induced membrane fusion.
    Siegel DP, Cherezov V, Greathouse DV, Koeppe RE, Killian JA, Caffrey M.
    Biophys J; 2006 Jan 01; 90(1):200-11. PubMed ID: 16214859
    [Abstract] [Full Text] [Related]

  • 16. On the theory of membrane fusion. The stalk mechanism.
    Markin VS, Kozlov MM, Borovjagin VL.
    Gen Physiol Biophys; 1984 Oct 01; 3(5):361-77. PubMed ID: 6510702
    [Abstract] [Full Text] [Related]

  • 17. Barotropic phase transition between the lamellar liquid crystal phase and the inverted hexagonal phase of dioleoylphosphatidylethanolamine.
    Sueyoshi R, Tada K, Goto M, Tamai N, Matsuki H, Kaneshina S.
    Colloids Surf B Biointerfaces; 2006 Jun 01; 50(1):85-8. PubMed ID: 16697154
    [Abstract] [Full Text] [Related]

  • 18. Inverted micellar intermediates and the transitions between lamellar, cubic, and inverted hexagonal amphiphile phases. III. Isotropic and inverted cubic state formation via intermediates in transitions between L alpha and HII phases.
    Siegel DP.
    Chem Phys Lipids; 1986 Dec 31; 42(4):279-301. PubMed ID: 3829210
    [Abstract] [Full Text] [Related]

  • 19. New phases of phospholipids and implications to the membrane fusion problem.
    Yang L, Ding L, Huang HW.
    Biochemistry; 2003 Jun 10; 42(22):6631-5. PubMed ID: 12779317
    [Abstract] [Full Text] [Related]

  • 20. The kinetics of non-lamellar phase formation in DOPE-Me: relevance to biomembrane fusion.
    Cherezov V, Siegel DP, Shaw W, Burgess SW, Caffrey M.
    J Membr Biol; 2003 Oct 01; 195(3):165-82. PubMed ID: 14724762
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 19.