These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
513 related items for PubMed ID: 9425061
1. Electron transfer in nitrogenase analyzed by Marcus theory: evidence for gating by MgATP. Lanzilotta WN, Parker VD, Seefeldt LC. Biochemistry; 1998 Jan 06; 37(1):399-407. PubMed ID: 9425061 [Abstract] [Full Text] [Related]
2. Evidence for electron transfer from the nitrogenase iron protein to the molybdenum-iron protein without MgATP hydrolysis: characterization of a tight protein-protein complex. Lanzilotta WN, Fisher K, Seefeldt LC. Biochemistry; 1996 Jun 04; 35(22):7188-96. PubMed ID: 8679547 [Abstract] [Full Text] [Related]
3. Electron transfer from the nitrogenase iron protein to the [8Fe-(7/8)S] clusters of the molybdenum-iron protein. Lanzilotta WN, Seefeldt LC. Biochemistry; 1996 Dec 24; 35(51):16770-6. PubMed ID: 8988014 [Abstract] [Full Text] [Related]
4. Changes in the midpoint potentials of the nitrogenase metal centers as a result of iron protein-molybdenum-iron protein complex formation. Lanzilotta WN, Seefeldt LC. Biochemistry; 1997 Oct 21; 36(42):12976-83. PubMed ID: 9335558 [Abstract] [Full Text] [Related]
5. Elucidation of a MgATP signal transduction pathway in the nitrogenase iron protein: formation of a conformation resembling the MgATP-bound state by protein engineering. Ryle MJ, Seefeldt LC. Biochemistry; 1996 Apr 16; 35(15):4766-75. PubMed ID: 8664266 [Abstract] [Full Text] [Related]
6. The [4Fe-4S] cluster domain of the nitrogenase iron protein facilitates conformational changes required for the cooperative binding of two nucleotides. Ryle MJ, Seefeldt LC. Biochemistry; 1996 Dec 10; 35(49):15654-62. PubMed ID: 8961928 [Abstract] [Full Text] [Related]
7. Docking of nitrogenase iron- and molybdenum-iron proteins for electron transfer and MgATP hydrolysis: the role of arginine 140 and lysine 143 of the Azotobacter vinelandii iron protein. Seefeldt LC. Protein Sci; 1994 Nov 10; 3(11):2073-81. PubMed ID: 7703853 [Abstract] [Full Text] [Related]
8. Effects on substrate reduction of substitution of histidine-195 by glutamine in the alpha-subunit of the MoFe protein of Azotobacter vinelandii nitrogenase. Dilworth MJ, Fisher K, Kim CH, Newton WE. Biochemistry; 1998 Dec 15; 37(50):17495-505. PubMed ID: 9860864 [Abstract] [Full Text] [Related]
9. Evidence for coupled electron and proton transfer in the [8Fe-7S] cluster of nitrogenase. Lanzilotta WN, Christiansen J, Dean DR, Seefeldt LC. Biochemistry; 1998 Aug 11; 37(32):11376-84. PubMed ID: 9698385 [Abstract] [Full Text] [Related]
10. MgATP-Bound and nucleotide-free structures of a nitrogenase protein complex between the Leu 127 Delta-Fe-protein and the MoFe-protein. Chiu H, Peters JW, Lanzilotta WN, Ryle MJ, Seefeldt LC, Howard JB, Rees DC. Biochemistry; 2001 Jan 23; 40(3):641-50. PubMed ID: 11170380 [Abstract] [Full Text] [Related]
11. Elucidating the mechanism of nucleotide-dependent changes in the redox potential of the [4Fe-4S] cluster in nitrogenase iron protein: the role of phenylalanine 135. Ryle MJ, Lanzilotta WN, Seefeldt LC. Biochemistry; 1996 Jul 23; 35(29):9424-34. PubMed ID: 8755721 [Abstract] [Full Text] [Related]
12. Insights into the role of nucleotide-dependent conformational change in nitrogenase catalysis: Structural characterization of the nitrogenase Fe protein Leu127 deletion variant with bound MgATP. Sen S, Krishnakumar A, McClead J, Johnson MK, Seefeldt LC, Szilagyi RK, Peters JW. J Inorg Biochem; 2006 May 23; 100(5-6):1041-52. PubMed ID: 16616373 [Abstract] [Full Text] [Related]
13. Catalytic and biophysical properties of a nitrogenase Apo-MoFe protein produced by a nifB-deletion mutant of Azotobacter vinelandii. Christiansen J, Goodwin PJ, Lanzilotta WN, Seefeldt LC, Dean DR. Biochemistry; 1998 Sep 08; 37(36):12611-23. PubMed ID: 9730834 [Abstract] [Full Text] [Related]
14. Nucleotide hydrolysis and protein conformational changes in Azotobacter vinelandii nitrogenase iron protein: defining the function of aspartate 129. Lanzilotta WN, Ryle MJ, Seefeldt LC. Biochemistry; 1995 Aug 29; 34(34):10713-23. PubMed ID: 7662655 [Abstract] [Full Text] [Related]
15. Evidence for electron transfer-dependent formation of a nitrogenase iron protein-molybdenum-iron protein tight complex. The role of aspartate 39. Lanzilotta WN, Fisher K, Seefeldt LC. J Biol Chem; 1997 Feb 14; 272(7):4157-65. PubMed ID: 9020128 [Abstract] [Full Text] [Related]
16. Spectroscopic evidence for changes in the redox state of the nitrogenase P-cluster during turnover. Chan JM, Christiansen J, Dean DR, Seefeldt LC. Biochemistry; 1999 May 04; 38(18):5779-85. PubMed ID: 10231529 [Abstract] [Full Text] [Related]
17. Temperature effects on the MgATP-induced electron transfer between the nitrogenase proteins from Azotobacter vinelandii. Mensink RE, Haaker H. Eur J Biochem; 1992 Sep 01; 208(2):295-9. PubMed ID: 1521527 [Abstract] [Full Text] [Related]
18. Kinetics of all stages of electron transfer in nitrogenase in the presence of a photodonor. Syrtsova LA, Nadtochenko VA, Timofeeva EA. Biochemistry (Mosc); 1998 Aug 01; 63(8):1007-13. PubMed ID: 9767192 [Abstract] [Full Text] [Related]
19. Evidence that MgATP accelerates primary electron transfer in a Clostridium pasteurianum Fe protein-Azotobacter vinelandii MoFe protein nitrogenase tight complex. Chan JM, Ryle MJ, Seefeldt LC. J Biol Chem; 1999 Jun 18; 274(25):17593-8. PubMed ID: 10364195 [Abstract] [Full Text] [Related]
20. Pre-steady-state MgATP-dependent proton production and electron transfer by nitrogenase from Azotobacter vinelandii. Duyvis MG, Wassink H, Haaker H. Eur J Biochem; 1994 Nov 01; 225(3):881-90. PubMed ID: 7957225 [Abstract] [Full Text] [Related] Page: [Next] [New Search]