These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


118 related items for PubMed ID: 9425744

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Modification of maize phosphoenolpyruvate carboxylase by Woodward's reagent K.
    Maralihalli GB, Bhagwat AS.
    J Protein Chem; 1993 Aug; 12(4):451-7. PubMed ID: 8251065
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Limited proteolysis of maize NADP-malic enzyme.
    Pinto S, Rao SR, Bhagwat AS.
    Indian J Biochem Biophys; 2002 Dec; 39(6):382-9. PubMed ID: 22905395
    [Abstract] [Full Text] [Related]

  • 8. Modification of essential arginine residues of pigeon liver malic enzyme.
    Chang GG, Huang TM.
    Biochim Biophys Acta; 1981 Aug 13; 660(2):341-7. PubMed ID: 7284407
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Equilibrium substrate binding studies of the malic enzyme of pigeon liver. Equivalence of nucleotide sites and anticooperativity associated with the binding of L-malate to the enzyme-manganese(II)-reduced nicotinamide adenine dinucleotide phosphate ternary complex.
    Pry TA, Hsu RY.
    Biochemistry; 1980 Mar 04; 19(5):951-62. PubMed ID: 7356971
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Inactivation of human liver arginase by Woodward's reagent K: evidence for reaction with His141.
    Carvajal N, Uribe E, López V, Salas M.
    Protein J; 2004 Apr 04; 23(3):179-83. PubMed ID: 15200049
    [Abstract] [Full Text] [Related]

  • 15. Properties and regulation of leaf nicotinamide-adenine dinucleotide phosphate-malate dehydrogenase and 'malic' enzyme in plants with the C4-dicarboxylic acid pathway of photosynthesis.
    Johnson HS, Hatch MD.
    Biochem J; 1970 Sep 04; 119(2):273-80. PubMed ID: 4395182
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Regulation of C4 photosynthesis: physical and kinetic properties of active (dithiol) and inactive (disulfide) NADP-malate dehydrogenase from Zea mays.
    Ashton AR, Hatch MD.
    Arch Biochem Biophys; 1983 Dec 04; 227(2):406-15. PubMed ID: 6667024
    [Abstract] [Full Text] [Related]

  • 18. Basic residues play key roles in catalysis and NADP(+)-specificity in maize (Zea mays L.) photosynthetic NADP(+)-dependent malic enzyme.
    Detarsio E, Andreo CS, Drincovich MF.
    Biochem J; 2004 Sep 15; 382(Pt 3):1025-30. PubMed ID: 15245332
    [Abstract] [Full Text] [Related]

  • 19. Investigation of the active site of the cyanogenic beta-D-glucosidase (linamarase) from Manihot esculenta Crantz (cassava). I. Evidence for an essential carboxylate and a reactive histidine residue in a single catalytic center.
    Keresztessy Z, Kiss L, Hughes MA.
    Arch Biochem Biophys; 1994 Oct 15; 314(1):142-52. PubMed ID: 7944386
    [Abstract] [Full Text] [Related]

  • 20. NADP-malic enzyme isoforms in maize leaves.
    Maurino VG, Drincovich MF, Andreo CS.
    Biochem Mol Biol Int; 1996 Feb 15; 38(2):239-50. PubMed ID: 8850519
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.