These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


200 related items for PubMed ID: 9427765

  • 1. Dynamic modes of the flipped-out cytosine during HhaI methyltransferase-DNA interactions in solution.
    Klimasauskas S, Szyperski T, Serva S, Wüthrich K.
    EMBO J; 1998 Jan 02; 17(1):317-24. PubMed ID: 9427765
    [Abstract] [Full Text] [Related]

  • 2. Caught in the act: visualization of an intermediate in the DNA base-flipping pathway induced by HhaI methyltransferase.
    Horton JR, Ratner G, Banavali NK, Huang N, Choi Y, Maier MA, Marquez VE, MacKerell AD, Cheng X.
    Nucleic Acids Res; 2004 Jan 02; 32(13):3877-86. PubMed ID: 15273274
    [Abstract] [Full Text] [Related]

  • 3. Protein-facilitated base flipping in DNA by cytosine-5-methyltransferase.
    Huang N, Banavali NK, MacKerell AD.
    Proc Natl Acad Sci U S A; 2003 Jan 07; 100(1):68-73. PubMed ID: 12506195
    [Abstract] [Full Text] [Related]

  • 4. Engineered extrahelical base destabilization enhances sequence discrimination of DNA methyltransferase M.HhaI.
    Youngblood B, Shieh FK, De Los Rios S, Perona JJ, Reich NO.
    J Mol Biol; 2006 Sep 15; 362(2):334-46. PubMed ID: 16919299
    [Abstract] [Full Text] [Related]

  • 5. Mechanism of inhibition of DNA (cytosine C5)-methyltransferases by oligodeoxyribonucleotides containing 5,6-dihydro-5-azacytosine.
    Sheikhnejad G, Brank A, Christman JK, Goddard A, Alvarez E, Ford H, Marquez VE, Marasco CJ, Sufrin JR, O'gara M, Cheng X.
    J Mol Biol; 1999 Feb 05; 285(5):2021-34. PubMed ID: 9925782
    [Abstract] [Full Text] [Related]

  • 6. The role of Arg165 towards base flipping, base stabilization and catalysis in M.HhaI.
    Shieh FK, Youngblood B, Reich NO.
    J Mol Biol; 2006 Sep 22; 362(3):516-27. PubMed ID: 16926025
    [Abstract] [Full Text] [Related]

  • 7. Spontaneous base flipping in DNA and its possible role in methyltransferase binding.
    Chen YZ, Mohan V, Griffey RH.
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Jul 22; 62(1 Pt B):1133-7. PubMed ID: 11088571
    [Abstract] [Full Text] [Related]

  • 8. M.HhaI binds tightly to substrates containing mismatches at the target base.
    Klimasauskas S, Roberts RJ.
    Nucleic Acids Res; 1995 Apr 25; 23(8):1388-95. PubMed ID: 7753630
    [Abstract] [Full Text] [Related]

  • 9. Enzymatic C5-cytosine methylation of DNA: mechanistic implications of new crystal structures for HhaL methyltransferase-DNA-AdoHcy complexes.
    O'Gara M, Klimasauskas S, Roberts RJ, Cheng X.
    J Mol Biol; 1996 Sep 06; 261(5):634-45. PubMed ID: 8800212
    [Abstract] [Full Text] [Related]

  • 10. HhaI DNA methyltransferase uses the protruding Gln237 for active flipping of its target cytosine.
    Daujotyte D, Serva S, Vilkaitis G, Merkiene E, Venclovas C, Klimasauskas S.
    Structure; 2004 Jun 06; 12(6):1047-55. PubMed ID: 15274924
    [Abstract] [Full Text] [Related]

  • 11. HhaI methyltransferase flips its target base out of the DNA helix.
    Klimasauskas S, Kumar S, Roberts RJ, Cheng X.
    Cell; 1994 Jan 28; 76(2):357-69. PubMed ID: 8293469
    [Abstract] [Full Text] [Related]

  • 12. The mechanism of DNA cytosine-5 methylation. Kinetic and mutational dissection of Hhai methyltransferase.
    Vilkaitis G, Merkiene E, Serva S, Weinhold E, Klimasauskas S.
    J Biol Chem; 2001 Jun 15; 276(24):20924-34. PubMed ID: 11283006
    [Abstract] [Full Text] [Related]

  • 13. A 7-Deazaadenosylaziridine Cofactor for Sequence-Specific Labeling of DNA by the DNA Cytosine-C5 Methyltransferase M.HhaI.
    Kunkel F, Lurz R, Weinhold E.
    Molecules; 2015 Nov 23; 20(11):20805-22. PubMed ID: 26610450
    [Abstract] [Full Text] [Related]

  • 14. Functional roles of the conserved threonine 250 in the target recognition domain of HhaI DNA methyltransferase.
    Vilkaitis G, Dong A, Weinhold E, Cheng X, Klimasauskas S.
    J Biol Chem; 2000 Dec 08; 275(49):38722-30. PubMed ID: 11102456
    [Abstract] [Full Text] [Related]

  • 15. Investigating the target recognition of DNA cytosine-5 methyltransferase HhaI by library selection using in vitro compartmentalisation.
    Lee YF, Tawfik DS, Griffiths AD.
    Nucleic Acids Res; 2002 Nov 15; 30(22):4937-44. PubMed ID: 12433997
    [Abstract] [Full Text] [Related]

  • 16. Chemical mapping of cytosines enzymatically flipped out of the DNA helix.
    Daujotyte D, Liutkeviciūte Z, Tamulaitis G, Klimasauskas S.
    Nucleic Acids Res; 2008 Jun 15; 36(10):e57. PubMed ID: 18450817
    [Abstract] [Full Text] [Related]

  • 17. Direct observation of cytosine flipping and covalent catalysis in a DNA methyltransferase.
    Gerasimaitė R, Merkienė E, Klimašauskas S.
    Nucleic Acids Res; 2011 May 15; 39(9):3771-80. PubMed ID: 21245034
    [Abstract] [Full Text] [Related]

  • 18. A structural basis for the preferential binding of hemimethylated DNA by HhaI DNA methyltransferase.
    O'Gara M, Roberts RJ, Cheng X.
    J Mol Biol; 1996 Nov 08; 263(4):597-606. PubMed ID: 8918941
    [Abstract] [Full Text] [Related]

  • 19. Distal structural elements coordinate a conserved base flipping network.
    Matje DM, Krivacic CT, Dahlquist FW, Reich NO.
    Biochemistry; 2013 Mar 12; 52(10):1669-76. PubMed ID: 23409802
    [Abstract] [Full Text] [Related]

  • 20. Functional analysis of Gln-237 mutants of HhaI methyltransferase.
    Mi S, Alonso D, Roberts RJ.
    Nucleic Acids Res; 1995 Feb 25; 23(4):620-7. PubMed ID: 7899082
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.