These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


155 related items for PubMed ID: 9435058

  • 21. Lactate dehydrogenase from Streptococcus mutans: purification, characterization, and crossed antigenicity with lactate dehydrogenases from Lactobacillus casei, Actinomyces viscosus, and Streptococcus sanguis.
    Sommer P, Klein JP, Schöller M, Frank RM.
    Infect Immun; 1985 Feb; 47(2):489-95. PubMed ID: 3917978
    [Abstract] [Full Text] [Related]

  • 22. Comparative acid tolerances and inhibitor sensitivities of isolated F-ATPases of oral lactic acid bacteria.
    Sturr MG, Marquis RE.
    Appl Environ Microbiol; 1992 Jul; 58(7):2287-91. PubMed ID: 1386211
    [Abstract] [Full Text] [Related]

  • 23. Thermophysiology of Streptococcus mutans and related lactic-acid bacteria.
    Ma Y, Marquis RE.
    Antonie Van Leeuwenhoek; 1997 Aug; 72(2):91-100. PubMed ID: 9298187
    [Abstract] [Full Text] [Related]

  • 24. Adsorption of lysozyme from human whole saliva by Streptococcus sanguis 903 and other oral microorganisms.
    Laible NJ, Germaine GR.
    Infect Immun; 1982 Apr; 36(1):148-59. PubMed ID: 7076291
    [Abstract] [Full Text] [Related]

  • 25. Inhibition of streptococcal growth, F-ATPase and pyrophosphatase by diphosphonates.
    Hsu MT, Sturr G, Curran TM, Marquis RE.
    Oral Microbiol Immunol; 1995 Feb; 10(1):47-53. PubMed ID: 7644273
    [Abstract] [Full Text] [Related]

  • 26. Role of bacterial interactions in the colonization of oral surfaces of Actinomyces viscosus.
    Kuramitsu HK, Paul A.
    Infect Immun; 1980 Jul; 29(1):83-90. PubMed ID: 6772577
    [Abstract] [Full Text] [Related]

  • 27. Plasticity of the Pyruvate Node Modulates Hydrogen Peroxide Production and Acid Tolerance in Multiple Oral Streptococci.
    Cheng X, Redanz S, Cullin N, Zhou X, Xu X, Joshi V, Koley D, Merritt J, Kreth J.
    Appl Environ Microbiol; 2018 Jan 15; 84(2):. PubMed ID: 29079629
    [Abstract] [Full Text] [Related]

  • 28. Inhibition of proton-translocating ATPases of Streptococcus mutans and Lactobacillus casei by fluoride and aluminum.
    Sturr MG, Marquis RE.
    Arch Microbiol; 1990 Jan 15; 155(1):22-7. PubMed ID: 2150306
    [Abstract] [Full Text] [Related]

  • 29. Inhibition of purified enolases from oral bacteria by fluoride.
    Guha-Chowdhury N, Clark AG, Sissons CH.
    Oral Microbiol Immunol; 1997 Apr 15; 12(2):91-7. PubMed ID: 9227132
    [Abstract] [Full Text] [Related]

  • 30. Effect of human saliva on glucose uptake by Streptococcus mutans and other oral microorganisms.
    Germaine GR, Tellefson LM.
    Infect Immun; 1981 Feb 15; 31(2):598-607. PubMed ID: 7012014
    [Abstract] [Full Text] [Related]

  • 31. Glucose uptake by Streptococcus mutans, Streptococcus mitis, and Actinomyces viscosus in the presence of human saliva.
    Germaine GR, Tellefson LM.
    Infect Immun; 1982 Dec 15; 38(3):1060-7. PubMed ID: 7152663
    [Abstract] [Full Text] [Related]

  • 32. Influence of copper depletion on iron uptake mediated by SFT, a stimulator of Fe transport.
    Yu J, Wessling-Resnick M.
    J Biol Chem; 1998 Mar 20; 273(12):6909-15. PubMed ID: 9506995
    [Abstract] [Full Text] [Related]

  • 33. Membrane-associated and solubilized ATPases of Streptococcus mutans and Streptococcus sanguis.
    Sutton SV, Marquis RE.
    J Dent Res; 1987 Jun 20; 66(6):1095-8. PubMed ID: 2887601
    [Abstract] [Full Text] [Related]

  • 34. Effects of organic acid anions on growth, glycolysis, and intracellular pH of oral streptococci.
    Dashper SG, Reynolds EC.
    J Dent Res; 2000 Jan 20; 79(1):90-6. PubMed ID: 10690666
    [Abstract] [Full Text] [Related]

  • 35. Dextran-mediated interbacterial aggregation between dextran-synthesizing streptococci and Actinomyces viscosus.
    Bourgeau G, McBride BC.
    Infect Immun; 1976 Apr 20; 13(4):1228-34. PubMed ID: 1279004
    [Abstract] [Full Text] [Related]

  • 36. Acid production from Lycasin, maltitol, sorbitol and xylitol by oral streptococci and lactobacilli.
    Edwardsson S, Birkhed D, Mejàre B.
    Acta Odontol Scand; 1977 Apr 20; 35(5):257-63. PubMed ID: 21508
    [Abstract] [Full Text] [Related]

  • 37. Iron acquisition and virulence in Helicobacter pylori: a major role for FeoB, a high-affinity ferrous iron transporter.
    Velayudhan J, Hughes NJ, McColm AA, Bagshaw J, Clayton CL, Andrews SC, Kelly DJ.
    Mol Microbiol; 2000 Jul 20; 37(2):274-86. PubMed ID: 10931324
    [Abstract] [Full Text] [Related]

  • 38. Adaptation of Streptococcus mutans and Enterococcus hirae to acid stress in continuous culture.
    Belli WA, Marquis RE.
    Appl Environ Microbiol; 1991 Apr 20; 57(4):1134-8. PubMed ID: 1829347
    [Abstract] [Full Text] [Related]

  • 39. Evidence that glucose and sucrose uptake in oral streptococcal bacteria involves independent phosphotransferase and proton-motive force-mediated mechanisms.
    Keevil CW, Williamson MI, Marsh PD, Ellwood DC.
    Arch Oral Biol; 1984 Apr 20; 29(11):871-8. PubMed ID: 6097204
    [Abstract] [Full Text] [Related]

  • 40. Sucrose metabolism by prominent members of the flora isolated from cariogenic and non-cariogenic dental plaques.
    Minah GE, Loesche WJ.
    Infect Immun; 1977 Jul 20; 17(1):55-61. PubMed ID: 407163
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 8.