These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
157 related items for PubMed ID: 9442096
1. Role of the core DNA polymerase III subunits at the replication fork. Alpha is the only subunit required for processive replication. Marians KJ, Hiasa H, Kim DR, McHenry CS. J Biol Chem; 1998 Jan 23; 273(4):2452-7. PubMed ID: 9442096 [Abstract] [Full Text] [Related]
2. Processive replication is contingent on the exonuclease subunit of DNA polymerase III holoenzyme. Studwell PS, O'Donnell M. J Biol Chem; 1990 Jan 15; 265(2):1171-8. PubMed ID: 2153103 [Abstract] [Full Text] [Related]
4. Proofreading by DNA polymerase III of Escherichia coli depends on cooperative interaction of the polymerase and exonuclease subunits. Maki H, Kornberg A. Proc Natl Acad Sci U S A; 1987 Jul 15; 84(13):4389-92. PubMed ID: 3037519 [Abstract] [Full Text] [Related]
5. Characterization of the unique C terminus of the Escherichia coli tau DnaX protein. Monomeric C-tau binds alpha AND DnaB and can partially replace tau in reconstituted replication forks. Dallmann HG, Kim S, Pritchard AE, Marians KJ, McHenry CS. J Biol Chem; 2000 May 19; 275(20):15512-9. PubMed ID: 10748120 [Abstract] [Full Text] [Related]
7. Coordinated leading- and lagging-strand synthesis at the Escherichia coli DNA replication fork. IV. Reconstitution of an asymmetric, dimeric DNA polymerase III holoenzyme. Wu CA, Zechner EL, Hughes AJ, Franden MA, McHenry CS, Marians KJ. J Biol Chem; 1992 Feb 25; 267(6):4064-73. PubMed ID: 1346785 [Abstract] [Full Text] [Related]
8. DNA polymerase III holoenzyme of Escherichia coli. III. Distinctive processive polymerases reconstituted from purified subunits. Maki S, Kornberg A. J Biol Chem; 1988 May 15; 263(14):6561-9. PubMed ID: 3283127 [Abstract] [Full Text] [Related]
9. Total reconstitution of DNA polymerase III holoenzyme reveals dual accessory protein clamps. O'Donnell M, Studwell PS. J Biol Chem; 1990 Jan 15; 265(2):1179-87. PubMed ID: 2404006 [Abstract] [Full Text] [Related]
10. The E. coli DNA Replication Fork. Lewis JS, Jergic S, Dixon NE. Enzymes; 2016 Jan 15; 39():31-88. PubMed ID: 27241927 [Abstract] [Full Text] [Related]
11. tau binds and organizes Escherichia coli replication proteins through distinct domains. Domain IV, located within the unique C terminus of tau, binds the replication fork, helicase, DnaB. Gao D, McHenry CS. J Biol Chem; 2001 Feb 09; 276(6):4441-6. PubMed ID: 11078744 [Abstract] [Full Text] [Related]
12. tau couples the leading- and lagging-strand polymerases at the Escherichia coli DNA replication fork. Kim S, Dallmann HG, McHenry CS, Marians KJ. J Biol Chem; 1996 Aug 30; 271(35):21406-12. PubMed ID: 8702922 [Abstract] [Full Text] [Related]
13. A bipartite polymerase-processivity factor interaction: only the internal beta binding site of the alpha subunit is required for processive replication by the DNA polymerase III holoenzyme. Dohrmann PR, McHenry CS. J Mol Biol; 2005 Jul 08; 350(2):228-39. PubMed ID: 15923012 [Abstract] [Full Text] [Related]
14. Coordinated leading- and lagging-strand synthesis at the Escherichia coli DNA replication fork. I. Multiple effectors act to modulate Okazaki fragment size. Wu CA, Zechner EL, Marians KJ. J Biol Chem; 1992 Feb 25; 267(6):4030-44. PubMed ID: 1740451 [Abstract] [Full Text] [Related]
19. The Escherichia coli preprimosome and DNA B helicase can form replication forks that move at the same rate. Mok M, Marians KJ. J Biol Chem; 1987 Dec 05; 262(34):16644-54. PubMed ID: 2824502 [Abstract] [Full Text] [Related]
20. Identification of Subunit Binding Positions on a Model Fork and Displacements That Occur during Sequential Assembly of the Escherichia coli Primosome. Manhart CM, McHenry CS. J Biol Chem; 2015 Apr 24; 290(17):10828-39. PubMed ID: 25745110 [Abstract] [Full Text] [Related] Page: [Next] [New Search]