These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
147 related items for PubMed ID: 9447231
1. Excision-repair patch lengths are similar for transcription-coupled repair and global genome repair in UV-irradiated human cells. Bowman KK, Smith CA, Hanawalt PC. Mutat Res; 1997 Nov; 385(2):95-105. PubMed ID: 9447231 [Abstract] [Full Text] [Related]
2. Ultraviolet-sensitive syndrome cells are defective in transcription-coupled repair of cyclobutane pyrimidine dimers. Spivak G, Itoh T, Matsunaga T, Nikaido O, Hanawalt P, Yamaizumi M. DNA Repair (Amst); 2002 Aug 06; 1(8):629-43. PubMed ID: 12509286 [Abstract] [Full Text] [Related]
3. Xeroderma pigmentosum complementation group C cells remove pyrimidine dimers selectively from the transcribed strand of active genes. Venema J, van Hoffen A, Karcagi V, Natarajan AT, van Zeeland AA, Mullenders LH. Mol Cell Biol; 1991 Aug 06; 11(8):4128-34. PubMed ID: 1649389 [Abstract] [Full Text] [Related]
4. Transcription-coupled repair removes both cyclobutane pyrimidine dimers and 6-4 photoproducts with equal efficiency and in a sequential way from transcribed DNA in xeroderma pigmentosum group C fibroblasts. van Hoffen A, Venema J, Meschini R, van Zeeland AA, Mullenders LH. EMBO J; 1995 Jan 16; 14(2):360-7. PubMed ID: 7835346 [Abstract] [Full Text] [Related]
8. Increased UV resistance of a xeroderma pigmentosum revertant cell line is correlated with selective repair of the transcribed strand of an expressed gene. Lommel L, Hanawalt PC. Mol Cell Biol; 1993 Feb 16; 13(2):970-6. PubMed ID: 8423816 [Abstract] [Full Text] [Related]
9. UV-enhanced reactivation of a UV-damaged reporter gene suggests transcription-coupled repair is UV-inducible in human cells. Francis MA, Rainbow AJ. Carcinogenesis; 1999 Jan 16; 20(1):19-26. PubMed ID: 9934845 [Abstract] [Full Text] [Related]
10. Mutational analysis of a function of xeroderma pigmentosum group A (XPA) protein in strand-specific DNA repair. Kobayashi T, Takeuchi S, Saijo M, Nakatsu Y, Morioka H, Otsuka E, Wakasugi M, Nikaido O, Tanaka K. Nucleic Acids Res; 1998 Oct 15; 26(20):4662-8. PubMed ID: 9753735 [Abstract] [Full Text] [Related]
11. Survival of UV-irradiated vaccinia virus in normal and xeroderma pigmentosum fibroblasts; evidence for repair of UV-damaged viral DNA. Klein B, Filon AR, van Zeeland AA, van der Eb AJ. Mutat Res; 1994 May 01; 307(1):25-32. PubMed ID: 7513804 [Abstract] [Full Text] [Related]
12. DNA repair defect in xeroderma pigmentosum group C and complementing factor from HeLa cells. Shivji MK, Eker AP, Wood RD. J Biol Chem; 1994 Sep 09; 269(36):22749-57. PubMed ID: 8077226 [Abstract] [Full Text] [Related]
13. Cells from XP-D and XP-D-CS patients exhibit equally inefficient repair of UV-induced damage in transcribed genes but different capacity to recover UV-inhibited transcription. van Hoffen A, Kalle WH, de Jong-Versteeg A, Lehmann AR, van Zeeland AA, Mullenders LH. Nucleic Acids Res; 1999 Jul 15; 27(14):2898-904. PubMed ID: 10390531 [Abstract] [Full Text] [Related]
16. Xeroderma pigmentosum and molecular cloning of DNA repair genes. Boulikas T. Anticancer Res; 1996 Jul 15; 16(2):693-708. PubMed ID: 8687116 [Abstract] [Full Text] [Related]
17. Repair of UV-endonuclease-susceptible sites in the 7 complementation groups of xeroderma pigmentosum A through G. Zelle B, Lohman PH. Mutat Res; 1979 Sep 15; 62(2):363-8. PubMed ID: 503100 [Abstract] [Full Text] [Related]
19. Comparison of the rate of excision of major UV photoproducts in the strands of the human HPRT gene of normal and xeroderma pigmentosum variant cells. Tung BS, McGregor WG, Wang YC, Maher VM, McCormick JJ. Mutat Res; 1996 Jan 02; 362(1):65-74. PubMed ID: 8538650 [Abstract] [Full Text] [Related]