These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
359 related items for PubMed ID: 9449326
1. Kinked-helices model of the nicotinic acetylcholine receptor ion channel and its complexes with blockers: simulation by the Monte Carlo minimization method. Tikhonov DB, Zhorov BS. Biophys J; 1998 Jan; 74(1):242-55. PubMed ID: 9449326 [Abstract] [Full Text] [Related]
2. Modelling and simulation of ion channels: applications to the nicotinic acetylcholine receptor. Sansom MS, Adcock C, Smith GR. J Struct Biol; 1998 Jan; 121(2):246-62. PubMed ID: 9615441 [Abstract] [Full Text] [Related]
3. Chloride channels of glycine and GABA receptors with blockers: Monte Carlo minimization and structure-activity relationships. Zhorov BS, Bregestovski PD. Biophys J; 2000 Apr; 78(4):1786-803. PubMed ID: 10733960 [Abstract] [Full Text] [Related]
9. Design, synthesis and functional characterization of a pentameric channel protein that mimics the presumed pore structure of the nicotinic cholinergic receptor. Montal MO, Iwamoto T, Tomich JM, Montal M. FEBS Lett; 1993 Apr 12; 320(3):261-6. PubMed ID: 7681786 [Abstract] [Full Text] [Related]
10. The roles of serine and threonine sidechains in ion channels: a modelling study. Sansom MS. Eur Biophys J; 1992 Apr 12; 21(4):281-98. PubMed ID: 1385107 [Abstract] [Full Text] [Related]
11. Synthetic peptides and four-helix bundle proteins as model systems for the pore-forming structure of channel proteins. I. Transmembrane segment M2 of the nicotinic cholinergic receptor channel is a key pore-lining structure. Oblatt-Montal M, Bühler LK, Iwamoto T, Tomich JM, Montal M. J Biol Chem; 1993 Jul 15; 268(20):14601-7. PubMed ID: 7686900 [Abstract] [Full Text] [Related]
12. Molecular dynamics study of water and Na+ ions in models of the pore region of the nicotinic acetylcholine receptor. Smith GR, Sansom MS. Biophys J; 1997 Sep 15; 73(3):1364-81. PubMed ID: 9284304 [Abstract] [Full Text] [Related]
13. Architecture of the neuronal nicotinic acetylcholine receptor ion channel at the binding site of bis-ammonium blockers. Brovtsyna NB, Tikhonov DB, Gorbunova OB, Gmiro VE, Serduk SE, Lukomskaya NY, Magazanik LG, Zhorov BS. J Membr Biol; 1996 Jul 15; 152(1):77-87. PubMed ID: 8660413 [Abstract] [Full Text] [Related]
15. Molecular dynamics simulation of the M2 helices within the nicotinic acetylcholine receptor transmembrane domain: structure and collective motions. Hung A, Tai K, Sansom MS. Biophys J; 2005 May 15; 88(5):3321-33. PubMed ID: 15722430 [Abstract] [Full Text] [Related]
16. A model of the closed form of the nicotinic acetylcholine receptor m2 channel pore. Kim S, Chamberlain AK, Bowie JU. Biophys J; 2004 Aug 15; 87(2):792-9. PubMed ID: 15298888 [Abstract] [Full Text] [Related]
17. An energy-efficient gating mechanism in the acetylcholine receptor channel suggested by molecular and Brownian dynamics. Corry B. Biophys J; 2006 Feb 01; 90(3):799-810. PubMed ID: 16284265 [Abstract] [Full Text] [Related]
18. Parallel helix bundles and ion channels: molecular modeling via simulated annealing and restrained molecular dynamics. Kerr ID, Sankararamakrishnan R, Smart OS, Sansom MS. Biophys J; 1994 Oct 01; 67(4):1501-15. PubMed ID: 7529585 [Abstract] [Full Text] [Related]
19. Probing the structure of the affinity-purified and lipid-reconstituted torpedo nicotinic acetylcholine receptor. Hamouda AK, Chiara DC, Blanton MP, Cohen JB. Biochemistry; 2008 Dec 02; 47(48):12787-94. PubMed ID: 18991407 [Abstract] [Full Text] [Related]
20. Conformational dynamics of the nicotinic acetylcholine receptor channel: a 35-ns molecular dynamics simulation study. Xu Y, Barrantes FJ, Luo X, Chen K, Shen J, Jiang H. J Am Chem Soc; 2005 Feb 02; 127(4):1291-9. PubMed ID: 15669869 [Abstract] [Full Text] [Related] Page: [Next] [New Search]