These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
493 related items for PubMed ID: 9450756
21. Hypochlorous acid-induced DNA base modification: potentiation by nitrite: biomarkers of DNA damage by reactive oxygen species. Whiteman M, Spencer JP, Jenner A, Halliwell B. Biochem Biophys Res Commun; 1999 Apr 13; 257(2):572-6. PubMed ID: 10198253 [Abstract] [Full Text] [Related]
22. Nitric oxide, oxidants, and protein tyrosine nitration. Radi R. Proc Natl Acad Sci U S A; 2004 Mar 23; 101(12):4003-8. PubMed ID: 15020765 [Abstract] [Full Text] [Related]
23. Oxidants downstream from superoxide inhibit nitric oxide production by vascular endothelium--a key role for selenium-dependent enzymes in vascular health. McCarty MF. Med Hypotheses; 1999 Oct 23; 53(4):315-25. PubMed ID: 10608266 [Abstract] [Full Text] [Related]
24. Mechanism of interaction of betanin and indicaxanthin with human myeloperoxidase and hypochlorous acid. Allegra M, Furtmüller PG, Jantschko W, Zederbauer M, Tesoriere L, Livrea MA, Obinger C. Biochem Biophys Res Commun; 2005 Jul 08; 332(3):837-44. PubMed ID: 15913556 [Abstract] [Full Text] [Related]
25. Inhibition of MIP-1alpha-induced human neutrophil and monocyte chemotactic activity by reactive oxygen and nitrogen metabolites. Sato E, Simpson KL, Grisham MB, Koyama S, Robbins RA. J Lab Clin Med; 2000 Feb 08; 135(2):161-9. PubMed ID: 10695661 [Abstract] [Full Text] [Related]
26. Xanthine oxidase reaction with nitric oxide and peroxynitrite. Houston M, Chumley P, Radi R, Rubbo H, Freeman BA. Arch Biochem Biophys; 1998 Jul 01; 355(1):1-8. PubMed ID: 9647660 [Abstract] [Full Text] [Related]
27. Human neutrophils use the myeloperoxidase-hydrogen peroxide-chloride system to chlorinate but not nitrate bacterial proteins during phagocytosis. Rosen H, Crowley JR, Heinecke JW. J Biol Chem; 2002 Aug 23; 277(34):30463-8. PubMed ID: 12060654 [Abstract] [Full Text] [Related]
28. Influence of plasma halide, pseudohalide and nitrite ions on myeloperoxidase-mediated protein and extracellular matrix damage. Xu S, Chuang CY, Malle E, Gamon LF, Hawkins CL, Davies MJ. Free Radic Biol Med; 2022 Aug 01; 188():162-174. PubMed ID: 35718304 [Abstract] [Full Text] [Related]
29. Myeloperoxidase and its contributory role in inflammatory vascular disease. Lau D, Baldus S. Pharmacol Ther; 2006 Jul 01; 111(1):16-26. PubMed ID: 16476484 [Abstract] [Full Text] [Related]
30. Peroxynitrite, a product between nitric oxide and superoxide anion, plays a cytotoxic role in the development of post-bypass systemic inflammatory response. Hayashi Y, Sawa Y, Nishimura M, Fukuyama N, Ichikawa H, Ohtake S, Nakazawa H, Matsuda H. Eur J Cardiothorac Surg; 2004 Aug 01; 26(2):276-80. PubMed ID: 15296883 [Abstract] [Full Text] [Related]
31. Tyrosine nitration by superoxide and nitric oxide fluxes in biological systems: modeling the impact of superoxide dismutase and nitric oxide diffusion. Quijano C, Romero N, Radi R. Free Radic Biol Med; 2005 Sep 15; 39(6):728-41. PubMed ID: 16109303 [Abstract] [Full Text] [Related]
32. Formation of nitric oxide-derived oxidants by myeloperoxidase in monocytes: pathways for monocyte-mediated protein nitration and lipid peroxidation In vivo. Hazen SL, Zhang R, Shen Z, Wu W, Podrez EA, MacPherson JC, Schmitt D, Mitra SN, Mukhopadhyay C, Chen Y, Cohen PA, Hoff HF, Abu-Soud HM. Circ Res; 1999 Nov 12; 85(10):950-8. PubMed ID: 10559142 [Abstract] [Full Text] [Related]
33. PEGylated single-walled carbon nanotubes activate neutrophils to increase production of hypochlorous acid, the oxidant capable of degrading nanotubes. Vlasova II, Vakhrusheva TV, Sokolov AV, Kostevich VA, Gusev AA, Gusev SA, Melnikova VI, Lobach AS. Toxicol Appl Pharmacol; 2012 Oct 01; 264(1):131-42. PubMed ID: 22884993 [Abstract] [Full Text] [Related]
34. Modulation of protein tyrosine nitration and inflammatory mediators by isoprenylhydroquinone glucoside. Olmos A, Giner RM, Recio MC, Ríos JL, Máñez S. Eur J Pharm Sci; 2007 Mar 01; 30(3-4):220-8. PubMed ID: 17161592 [Abstract] [Full Text] [Related]
35. [Oxides of nitrogen (NO* and NO2-) as cofactors of the myeloperoxidase system]. But PG, Murav'ev RA, Fomina VA, Rogovin VV. Izv Akad Nauk Ser Biol; 2004 Mar 01; (3):269-73. PubMed ID: 15354951 [Abstract] [Full Text] [Related]
36. Peroxynitrite-derived carbonate and nitrogen dioxide radicals readily react with lipoic and dihydrolipoic acid. Trujillo M, Folkes L, Bartesaghi S, Kalyanaraman B, Wardman P, Radi R. Free Radic Biol Med; 2005 Jul 15; 39(2):279-88. PubMed ID: 15964519 [Abstract] [Full Text] [Related]
37. The nonspecific inflammatory response to injury. Mayers I, Johnson D. Can J Anaesth; 1998 Sep 15; 45(9):871-9. PubMed ID: 9818111 [Abstract] [Full Text] [Related]
38. Red blood cells in the metabolism of nitric oxide-derived peroxynitrite. Romero N, Denicola A, Radi R. IUBMB Life; 2006 Oct 15; 58(10):572-80. PubMed ID: 17050374 [Abstract] [Full Text] [Related]
39. Inactivation and nitration of human superoxide dismutase (SOD) by fluxes of nitric oxide and superoxide. Demicheli V, Quijano C, Alvarez B, Radi R. Free Radic Biol Med; 2007 May 01; 42(9):1359-68. PubMed ID: 17395009 [Abstract] [Full Text] [Related]
40. Human neutrophils employ myeloperoxidase to convert alpha-amino acids to a battery of reactive aldehydes: a pathway for aldehyde generation at sites of inflammation. Hazen SL, Hsu FF, d'Avignon A, Heinecke JW. Biochemistry; 1998 May 12; 37(19):6864-73. PubMed ID: 9578573 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]