These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
631 related items for PubMed ID: 9452388
1. Autophosphorylation at Thr286 of the alpha calcium-calmodulin kinase II in LTP and learning. Giese KP, Fedorov NB, Filipkowski RK, Silva AJ. Science; 1998 Feb 06; 279(5352):870-3. PubMed ID: 9452388 [Abstract] [Full Text] [Related]
2. CaM kinase II in long-term potentiation. Fukunaga K, Muller D, Miyamoto E. Neurochem Int; 1996 Apr 06; 28(4):343-58. PubMed ID: 8740440 [Abstract] [Full Text] [Related]
3. Activity-dependent long-term potentiation of intrinsic excitability in hippocampal CA1 pyramidal neurons. Xu J, Kang N, Jiang L, Nedergaard M, Kang J. J Neurosci; 2005 Feb 16; 25(7):1750-60. PubMed ID: 15716411 [Abstract] [Full Text] [Related]
4. Decreased calcium/calmodulin-dependent protein kinase II and protein kinase C activities mediate impairment of hippocampal long-term potentiation in the olfactory bulbectomized mice. Moriguchi S, Han F, Nakagawasai O, Tadano T, Fukunaga K. J Neurochem; 2006 Apr 16; 97(1):22-9. PubMed ID: 16515554 [Abstract] [Full Text] [Related]
5. Adenylyl cyclase activation modulates activity-dependent changes in synaptic strength and Ca2+/calmodulin-dependent kinase II autophosphorylation. Makhinson M, Chotiner JK, Watson JB, O'Dell TJ. J Neurosci; 1999 Apr 01; 19(7):2500-10. PubMed ID: 10087064 [Abstract] [Full Text] [Related]
6. Long-term potentiation can be induced in the CA1 region of hippocampus in the absence of αCaMKII T286-autophosphorylation. Villers A, Giese KP, Ris L. Learn Mem; 2014 Nov 01; 21(11):616-26. PubMed ID: 25322797 [Abstract] [Full Text] [Related]
7. Potentiated transmission and prevention of further LTP by increased CaMKII activity in postsynaptic hippocampal slice neurons. Pettit DL, Perlman S, Malinow R. Science; 1994 Dec 16; 266(5192):1881-5. PubMed ID: 7997883 [Abstract] [Full Text] [Related]
9. Autophosphorylation of alphaCaMKII is not a general requirement for NMDA receptor-dependent LTP in the adult mouse. Cooke SF, Wu J, Plattner F, Errington M, Rowan M, Peters M, Hirano A, Bradshaw KD, Anwyl R, Bliss TV, Giese KP. J Physiol; 2006 Aug 01; 574(Pt 3):805-18. PubMed ID: 16728448 [Abstract] [Full Text] [Related]
10. Memory consolidation induces N-methyl-D-aspartic acid-receptor- and Ca2+/calmodulin-dependent protein kinase II-dependent modifications in alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor properties. Bevilaqua LR, Medina JH, Izquierdo I, Cammarota M. Neuroscience; 2005 Aug 01; 136(2):397-403. PubMed ID: 16182449 [Abstract] [Full Text] [Related]
11. Input- and subunit-specific AMPA receptor trafficking underlying long-term potentiation at hippocampal CA3 synapses. Kakegawa W, Tsuzuki K, Yoshida Y, Kameyama K, Ozawa S. Eur J Neurosci; 2004 Jul 01; 20(1):101-10. PubMed ID: 15245483 [Abstract] [Full Text] [Related]
12. Role of inhibitory autophosphorylation of calcium/calmodulin-dependent kinase II (αCAMKII) in persistent (>24 h) hippocampal LTP and in LTD facilitated by novel object-place learning and recognition in mice. Goh JJ, Manahan-Vaughan D. Behav Brain Res; 2015 May 15; 285():79-88. PubMed ID: 24480420 [Abstract] [Full Text] [Related]
13. Autonomous activity of CaMKII is only transiently increased following the induction of long-term potentiation in the rat hippocampus. Lengyel I, Voss K, Cammarota M, Bradshaw K, Brent V, Murphy KP, Giese KP, Rostas JA, Bliss TV. Eur J Neurosci; 2004 Dec 15; 20(11):3063-72. PubMed ID: 15579161 [Abstract] [Full Text] [Related]
14. The role of calcium-calmodulin kinase II in three forms of synaptic plasticity. Stevens CF, Tonegawa S, Wang Y. Curr Biol; 1994 Aug 01; 4(8):687-93. PubMed ID: 7953554 [Abstract] [Full Text] [Related]
15. Nefiracetam activation of CaM kinase II and protein kinase C mediated by NMDA and metabotropic glutamate receptors in olfactory bulbectomized mice. Moriguchi S, Han F, Shioda N, Yamamoto Y, Nakajima T, Nakagawasai O, Tadano T, Yeh JZ, Narahashi T, Fukunaga K. J Neurochem; 2009 Jul 01; 110(1):170-81. PubMed ID: 19457128 [Abstract] [Full Text] [Related]
16. Abnormal hippocampal spatial representations in alphaCaMKIIT286A and CREBalphaDelta- mice. Cho YH, Giese KP, Tanila H, Silva AJ, Eichenbaum H. Science; 1998 Feb 06; 279(5352):867-9. PubMed ID: 9452387 [Abstract] [Full Text] [Related]
17. Inhibitory autophosphorylation of CaMKII controls PSD association, plasticity, and learning. Elgersma Y, Fedorov NB, Ikonen S, Choi ES, Elgersma M, Carvalho OM, Giese KP, Silva AJ. Neuron; 2002 Oct 24; 36(3):493-505. PubMed ID: 12408851 [Abstract] [Full Text] [Related]
18. CA1 long-term potentiation is diminished but present in hippocampal slices from alpha-CaMKII mutant mice. Hinds HL, Tonegawa S, Malinow R. Learn Mem; 1998 Oct 24; 5(4-5):344-54. PubMed ID: 10454359 [Abstract] [Full Text] [Related]
19. CaMKII Autophosphorylation Is Necessary for Optimal Integration of Ca2+ Signals during LTP Induction, but Not Maintenance. Chang JY, Parra-Bueno P, Laviv T, Szatmari EM, Lee SR, Yasuda R. Neuron; 2017 May 17; 94(4):800-808.e4. PubMed ID: 28521133 [Abstract] [Full Text] [Related]
20. Amyloid beta prevents activation of calcium/calmodulin-dependent protein kinase II and AMPA receptor phosphorylation during hippocampal long-term potentiation. Zhao D, Watson JB, Xie CW. J Neurophysiol; 2004 Nov 17; 92(5):2853-8. PubMed ID: 15212428 [Abstract] [Full Text] [Related] Page: [Next] [New Search]