These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


134 related items for PubMed ID: 9453259

  • 61. Renal Effects of Cyclooxygenase Inhibition When Nitric Oxide Synthesis Is Reduced and Angiotensin II Levels Are Enhanced.
    López R, Llinás MT, Salazar E, Salazar FJ.
    J Cardiovasc Pharmacol; 2015 May; 65(5):465-72. PubMed ID: 25945864
    [Abstract] [Full Text] [Related]

  • 62. Nitric oxide dependency of arterial pressure-induced changes in renal interstitial hydrostatic pressure in dogs.
    Majid DS, Said KE, Omoro SA, Navar LG.
    Circ Res; 2001 Feb 16; 88(3):347-51. PubMed ID: 11179204
    [Abstract] [Full Text] [Related]

  • 63. The inhibitory effect of leptin on angiotensin II-induced vasoconstriction in vascular smooth muscle cells is mediated via a nitric oxide-dependent mechanism.
    Rodríguez A, Fortuño A, Gómez-Ambrosi J, Zalba G, Díez J, Frühbeck G.
    Endocrinology; 2007 Jan 16; 148(1):324-31. PubMed ID: 17038553
    [Abstract] [Full Text] [Related]

  • 64. Functional role of angiotensin II type 1 and 2 receptors in regulation of uterine blood flow in nonpregnant sheep.
    Lambers DS, Greenberg SG, Clark KE.
    Am J Physiol Heart Circ Physiol; 2000 Feb 16; 278(2):H353-9. PubMed ID: 10666064
    [Abstract] [Full Text] [Related]

  • 65. Effect of interactions between nitric oxide and angiotensin II on pressure diuresis and natriuresis.
    Madrid MI, García-Salom M, Tornel J, De Gasparo M, Fenoy FJ.
    Am J Physiol; 1997 Nov 16; 273(5):R1676-82. PubMed ID: 9374809
    [Abstract] [Full Text] [Related]

  • 66.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 67.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 68.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 69.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 70. Protective effect of angiotensin II-induced increase in nitric oxide in the renal medullary circulation.
    Zou AP, Wu F, Cowley AW.
    Hypertension; 1998 Jan 16; 31(1 Pt 2):271-6. PubMed ID: 9453315
    [Abstract] [Full Text] [Related]

  • 71.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 72. Regional blood flow responses to acute ANG II infusion: effects of nitric oxide synthase inhibition.
    Symons JD, Musch TI, Hageman KS, Stebbins CL.
    J Cardiovasc Pharmacol; 1999 Jul 16; 34(1):116-23. PubMed ID: 10413077
    [Abstract] [Full Text] [Related]

  • 73.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 74.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 75.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 76. Dilator and constrictor response of renal vasculature during acute renal hypotension in anesthetized goats. Role of nitric oxide.
    Diéguez G, García-Villalón AL.
    Vascul Pharmacol; 2011 Jul 16; 54(3-6):107-11. PubMed ID: 21571096
    [Abstract] [Full Text] [Related]

  • 77. Vessel- and vasoconstrictor-dependent role of rho/rho-kinase in renal microvascular tone.
    Nakamura A, Hayashi K, Ozawa Y, Fujiwara K, Okubo K, Kanda T, Wakino S, Saruta T.
    J Vasc Res; 2003 Jul 16; 40(3):244-51. PubMed ID: 12902637
    [Abstract] [Full Text] [Related]

  • 78.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 79. Two new nitric oxide synthase inhibitors: pyridoxal aminoguanidine and 8-quinolinecarboxylic hydrazide selectively inhibit basal but not agonist-stimulated release of nitric oxide in rat aorta.
    Pekiner C, Kelicen P, Uma S, Miwa I.
    Pharmacol Res; 2002 Oct 16; 46(4):317-20. PubMed ID: 12361692
    [Abstract] [Full Text] [Related]

  • 80.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 7.