These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
273 related items for PubMed ID: 9454592
41. Mutations in the substrate binding domain of the Escherichia coli 70 kDa molecular chaperone, DnaK, which alter substrate affinity or interdomain coupling. Montgomery DL, Morimoto RI, Gierasch LM. J Mol Biol; 1999 Feb 26; 286(3):915-32. PubMed ID: 10024459 [Abstract] [Full Text] [Related]
42. Kinetic analysis of interdomain coupling in a lidless variant of the molecular chaperone DnaK: DnaK's lid inhibits transition to the low affinity state. Slepenkov SV, Witt SN. Biochemistry; 2002 Oct 08; 41(40):12224-35. PubMed ID: 12356325 [Abstract] [Full Text] [Related]
43. A kinetic analysis of the nucleotide-induced allosteric transitions of GroEL. Cliff MJ, Kad NM, Hay N, Lund PA, Webb MR, Burston SG, Clarke AR. J Mol Biol; 1999 Oct 29; 293(3):667-84. PubMed ID: 10543958 [Abstract] [Full Text] [Related]
44. Asymmetry, commitment and inhibition in the GroE ATPase cycle impose alternating functions on the two GroEL rings. Kad NM, Ranson NA, Cliff MJ, Clarke AR. J Mol Biol; 1998 Apr 24; 278(1):267-78. PubMed ID: 9571049 [Abstract] [Full Text] [Related]
45. Directed evolution of the DnaK chaperone: mutations in the lid domain result in enhanced chaperone activity. Aponte RA, Zimmermann S, Reinstein J. J Mol Biol; 2010 May 28; 399(1):154-67. PubMed ID: 20381501 [Abstract] [Full Text] [Related]
46. ATP lowers the activation enthalpy barriers to DnaK-peptide complex formation and dissociation. Farr CD, Witt SN. Cell Stress Chaperones; 1999 Jun 28; 4(2):77-85. PubMed ID: 10547057 [Abstract] [Full Text] [Related]
47. Balance of ATPase stimulation and nucleotide exchange is not required for efficient refolding activity of the DnaK chaperone. Groemping Y, Seidel R, Reinstein J. FEBS Lett; 2005 Oct 24; 579(25):5713-7. PubMed ID: 16225874 [Abstract] [Full Text] [Related]
48. The second metal-binding site of 70 kDa heat-shock protein is essential for ADP binding, ATP hydrolysis and ATP synthesis. Wu X, Yano M, Washida H, Kido H. Biochem J; 2004 Mar 15; 378(Pt 3):793-9. PubMed ID: 14664695 [Abstract] [Full Text] [Related]
49. M domains couple the ClpB threading motor with the DnaK chaperone activity. Haslberger T, Weibezahn J, Zahn R, Lee S, Tsai FT, Bukau B, Mogk A. Mol Cell; 2007 Jan 26; 25(2):247-60. PubMed ID: 17244532 [Abstract] [Full Text] [Related]
50. Control of the DnaK chaperone cycle by substoichiometric concentrations of the co-chaperones DnaJ and GrpE. Pierpaoli EV, Sandmeier E, Schönfeld HJ, Christen P. J Biol Chem; 1998 Mar 20; 273(12):6643-9. PubMed ID: 9506960 [Abstract] [Full Text] [Related]
51. The allosteric transition in DnaK probed by infrared difference spectroscopy. Concerted ATP-induced rearrangement of the substrate binding domain. Moro F, Fernández-Sáiz V, Muga A. Protein Sci; 2006 Feb 20; 15(2):223-33. PubMed ID: 16384998 [Abstract] [Full Text] [Related]
52. Complementation studies of the DnaK-DnaJ-GrpE chaperone machineries from Vibrio harveyi and Escherichia coli, both in vivo and in vitro. Zmijewski MA, Kwiatkowska JM, Lipińska B. Arch Microbiol; 2004 Dec 20; 182(6):436-49. PubMed ID: 15448982 [Abstract] [Full Text] [Related]
53. Nucleotide-induced conformational changes in the ATPase and substrate binding domains of the DnaK chaperone provide evidence for interdomain communication. Buchberger A, Theyssen H, Schröder H, McCarty JS, Virgallita G, Milkereit P, Reinstein J, Bukau B. J Biol Chem; 1995 Jul 14; 270(28):16903-10. PubMed ID: 7622507 [Abstract] [Full Text] [Related]
54. The in vivo and in vitro characterization of DnaK from Agrobacterium tumefaciens RUOR. Boshoff A, Hennessy F, Blatch GL. Protein Expr Purif; 2004 Dec 14; 38(2):161-9. PubMed ID: 15555931 [Abstract] [Full Text] [Related]
55. Conformational properties of bacterial DnaK and yeast mitochondrial Hsp70. Role of the divergent C-terminal alpha-helical subdomain. Moro F, Fernández-Sáiz V, Slutsky O, Azem A, Muga A. FEBS J; 2005 Jun 14; 272(12):3184-96. PubMed ID: 15955075 [Abstract] [Full Text] [Related]
56. Three mechanistic steps detected by FRET after presynaptic filament formation in homologous recombination. ATP hydrolysis required for release of oligonucleotide heteroduplex product from RecA. Gumbs OH, Shaner SL. Biochemistry; 1998 Aug 18; 37(33):11692-706. PubMed ID: 9709007 [Abstract] [Full Text] [Related]
57. Deletion of DnaK's lid strengthens binding to the nucleotide exchange factor, GrpE: a kinetic and thermodynamic analysis. Chesnokova LS, Slepenkov SV, Protasevich II, Sehorn MG, Brouillette CG, Witt SN. Biochemistry; 2003 Aug 05; 42(30):9028-40. PubMed ID: 12885236 [Abstract] [Full Text] [Related]
58. Tuning of DnaK chaperone action by nonnative protein sensor DnaJ and thermosensor GrpE. Siegenthaler RK, Christen P. J Biol Chem; 2006 Nov 10; 281(45):34448-56. PubMed ID: 16940296 [Abstract] [Full Text] [Related]
59. The DnaK chaperones from the archaeon Methanosarcina mazei and the bacterium Escherichia coli have different substrate specificities. Zmijewski MA, Skórko-Glonek J, Tanfani F, Banecki B, Kotlarz A, Macario AJ, Lipińska B. Acta Biochim Pol; 2007 Nov 10; 54(3):509-22. PubMed ID: 17882322 [Abstract] [Full Text] [Related]