These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


321 related items for PubMed ID: 9454610

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Nitric oxide promotes intracellular calcium release from mitochondria in striatal neurons.
    Horn TF, Wolf G, Duffy S, Weiss S, Keilhoff G, MacVicar BA.
    FASEB J; 2002 Oct; 16(12):1611-22. PubMed ID: 12374784
    [Abstract] [Full Text] [Related]

  • 4. Calcium sequestering ability of mitochondria modulates influx of calcium through glutamate receptor channel.
    Kannurpatti SS, Joshi PG, Joshi NB.
    Neurochem Res; 2000 Dec; 25(12):1527-36. PubMed ID: 11152381
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. CCCP enhances catecholamine release from the perfused rat adrenal medulla.
    Lim DY, Park HG, Miwa S.
    Auton Neurosci; 2006 Jul 30; 128(1-2):37-47. PubMed ID: 16461015
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Metabotropic receptor-mediated Ca2+ signaling elevates mitochondrial Ca2+ and stimulates oxidative metabolism in hippocampal slice cultures.
    Kann O, Kovács R, Heinemann U.
    J Neurophysiol; 2003 Aug 30; 90(2):613-21. PubMed ID: 12724360
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Histamine induces oscillations of mitochondrial free Ca2+ concentration in single cultured rat brain astrocytes.
    Jou MJ, Peng TI, Sheu SS.
    J Physiol; 1996 Dec 01; 497 ( Pt 2)(Pt 2):299-308. PubMed ID: 8961176
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. NMDA and non-NMDA receptor-mediated differential Ca2+ load and greater vulnerability of motor neurons in spinal cord cultures.
    Sen I, Joshi DC, Joshi PG, Joshi NB.
    Neurochem Int; 2008 Jan 01; 52(1-2):247-55. PubMed ID: 17692996
    [Abstract] [Full Text] [Related]

  • 17. Brain mitochondrial defects amplify intracellular [Ca2+] rise and neurodegeneration but not Ca2+ entry during NMDA receptor activation.
    Jacquard C, Trioulier Y, Cosker F, Escartin C, Bizat N, Hantraye P, Cancela JM, Bonvento G, Brouillet E.
    FASEB J; 2006 May 01; 20(7):1021-3. PubMed ID: 16571773
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Resistance to kynurenic acid of the NMDA receptor-dependent toxicity of 3-nitropropionic acid and cyanide in cerebellar granule neurons.
    Fatokun AA, Smith RA, Stone TW.
    Brain Res; 2008 Jun 18; 1215():200-7. PubMed ID: 18486115
    [Abstract] [Full Text] [Related]

  • 20. Ruthenium red-mediated inhibition of large-conductance Ca2+-activated K+ channels in rat pituitary GH3 cells.
    Wu SN, Jan CR, Li HF.
    J Pharmacol Exp Ther; 1999 Sep 18; 290(3):998-1005. PubMed ID: 10454470
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 17.