These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


740 related items for PubMed ID: 9460050

  • 1. Volume regulation in red blood cells of the frog Rana temporaria after osmotic shrinkage and swelling.
    Gusev GP, Lapin AV, Agulakova NI.
    Membr Cell Biol; 1997; 11(3):305-17. PubMed ID: 9460050
    [Abstract] [Full Text] [Related]

  • 2. Inhibition and stimulation of K+ transport across the frog erythrocyte membrane by furosemide, DIOA, DIDS and quinine.
    Gusev GP, Lapin AV, Agalakova NI.
    Gen Physiol Biophys; 1999 Sep; 18(3):269-82. PubMed ID: 10703743
    [Abstract] [Full Text] [Related]

  • 3. Demonstration of a [K+,Cl-]-cotransport system in human red cells by its sensitivity to [(dihydroindenyl)oxy]alkanoic acids: regulation of cell swelling and distinction from the bumetanide-sensitive [Na+,K+,Cl-]-cotransport system.
    Garay RP, Nazaret C, Hannaert PA, Cragoe EJ.
    Mol Pharmacol; 1988 Jun; 33(6):696-701. PubMed ID: 3380083
    [Abstract] [Full Text] [Related]

  • 4. Effects of fluoride and vanadate on K+ transport across the erythrocyte membrane of Rana temporaria.
    Agalakova NI, Lapin AV, Gusev GP.
    Membr Cell Biol; 2000 Jun; 13(4):527-36. PubMed ID: 10926370
    [Abstract] [Full Text] [Related]

  • 5. An amiloride-sensitive, volume-dependent Na+ transport across the lamprey (Lampetra fluviatilis) erythrocyte membrane.
    Gusev GP, Sherstobitov AO.
    Gen Physiol Biophys; 1996 Apr; 15(2):129-43. PubMed ID: 8899417
    [Abstract] [Full Text] [Related]

  • 6. Amiloride-sensitive sodium transport in lamprey red blood cells: evidence for two distinct transport pathways.
    Gusev GP, Ivanova TI.
    Gen Physiol Biophys; 2004 Dec; 23(4):443-56. PubMed ID: 15815079
    [Abstract] [Full Text] [Related]

  • 7. Role of separate K+ and Cl- channels and of Na+/Cl- cotransport in volume regulation in Ehrlich cells.
    Hoffmann EK.
    Fed Proc; 1985 Jun; 44(9):2513-9. PubMed ID: 2581818
    [Abstract] [Full Text] [Related]

  • 8. Volume regulation by human lymphocytes: characterization of the ionic basis for regulatory volume decrease.
    Cheung RK, Grinstein S, Dosch HM, Gelfand EW.
    J Cell Physiol; 1982 Aug; 112(2):189-96. PubMed ID: 6288741
    [Abstract] [Full Text] [Related]

  • 9. Ionic mechanisms of regulatory volume increase (RVI) in the human hepatoma cell-line HepG2.
    Wehner F, Lawonn P, Tinel H.
    Pflugers Arch; 2002 Mar; 443(5-6):779-90. PubMed ID: 11889576
    [Abstract] [Full Text] [Related]

  • 10. Anisotonic media and glutamate-induced ion transport and volume responses in primary astrocyte cultures.
    Kimelberg HK.
    J Physiol (Paris); 1987 Mar; 82(4):294-303. PubMed ID: 3503932
    [Abstract] [Full Text] [Related]

  • 11. [Potassium ion transport in the erythrocytes of the frog Rana ridibunda].
    Agalakova NI, Lapin AV, Gusev GP.
    Zh Evol Biokhim Fiziol; 1995 Mar; 31(2):161-9. PubMed ID: 7483911
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Cation fluxes and volume regulation by human lymphocytes.
    Bui AH, Wiley JS.
    J Cell Physiol; 1981 Jul; 108(1):47-54. PubMed ID: 7263767
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 37.