These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


176 related items for PubMed ID: 9461612

  • 1. Metabolism of ferulic acid to vanillin. A bacterial gene of the enoyl-SCoA hydratase/isomerase superfamily encodes an enzyme for the hydration and cleavage of a hydroxycinnamic acid SCoA thioester.
    Gasson MJ, Kitamura Y, McLauchlan WR, Narbad A, Parr AJ, Parsons EL, Payne J, Rhodes MJ, Walton NJ.
    J Biol Chem; 1998 Feb 13; 273(7):4163-70. PubMed ID: 9461612
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Biochemical and genetic analyses of ferulic acid catabolism in Pseudomonas sp. Strain HR199.
    Overhage J, Priefert H, Steinbüchel A.
    Appl Environ Microbiol; 1999 Nov 13; 65(11):4837-47. PubMed ID: 10543794
    [Abstract] [Full Text] [Related]

  • 5. A ternary complex of hydroxycinnamoyl-CoA hydratase-lyase (HCHL) with acetyl-CoA and vanillin gives insights into substrate specificity and mechanism.
    Bennett JP, Bertin L, Moulton B, Fairlamb IJ, Brzozowski AM, Walton NJ, Grogan G.
    Biochem J; 2008 Sep 01; 414(2):281-9. PubMed ID: 18479250
    [Abstract] [Full Text] [Related]

  • 6. The coenzyme A-dependent, non-beta-oxidation pathway and not direct deacetylation is the major route for ferulic acid degradation in Delftia acidovorans.
    Plaggenborg R, Steinbüchel A, Priefert H.
    FEMS Microbiol Lett; 2001 Nov 27; 205(1):9-16. PubMed ID: 11728709
    [Abstract] [Full Text] [Related]

  • 7. Metabolic engineering of Pseudomonas fluorescens for the production of vanillin from ferulic acid.
    Di Gioia D, Luziatelli F, Negroni A, Ficca AG, Fava F, Ruzzi M.
    J Biotechnol; 2011 Dec 20; 156(4):309-16. PubMed ID: 21875627
    [Abstract] [Full Text] [Related]

  • 8. Metabolic engineering of Pediococcus acidilactici BD16 for production of vanillin through ferulic acid catabolic pathway and process optimization using response surface methodology.
    Kaur B, Chakraborty D, Kumar B.
    Appl Microbiol Biotechnol; 2014 Oct 20; 98(20):8539-51. PubMed ID: 25077778
    [Abstract] [Full Text] [Related]

  • 9. Cloning and characterization of the ferulic acid catabolic genes of Sphingomonas paucimobilis SYK-6.
    Masai E, Harada K, Peng X, Kitayama H, Katayama Y, Fukuda M.
    Appl Environ Microbiol; 2002 Sep 20; 68(9):4416-24. PubMed ID: 12200295
    [Abstract] [Full Text] [Related]

  • 10. Functional analyses of genes involved in the metabolism of ferulic acid in Pseudomonas putida KT2440.
    Plaggenborg R, Overhage J, Steinbüchel A, Priefert H.
    Appl Microbiol Biotechnol; 2003 Jun 20; 61(5-6):528-35. PubMed ID: 12764569
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Characterization of two Streptomyces enzymes that convert ferulic acid to vanillin.
    Yang W, Tang H, Ni J, Wu Q, Hua D, Tao F, Xu P.
    PLoS One; 2013 Jun 20; 8(6):e67339. PubMed ID: 23840666
    [Abstract] [Full Text] [Related]

  • 13. Site-directed mutagenesis of putative active-site amino acid residues of 3,2-trans-enoyl-CoA isomerase, conserved within the low-homology isomerase/hydratase enzyme family.
    Müller-Newen G, Stoffel W.
    Biochemistry; 1993 Oct 26; 32(42):11405-12. PubMed ID: 8218206
    [Abstract] [Full Text] [Related]

  • 14. Metabolism of ferulic acid via vanillin using a novel CoA-dependent pathway in a newly-isolated strain of Pseudomonas fluorescens.
    Narbad A, Gasson MJ.
    Microbiology (Reading); 1998 May 26; 144 ( Pt 5)():1397-1405. PubMed ID: 9611814
    [Abstract] [Full Text] [Related]

  • 15. Rerouting the plant phenylpropanoid pathway by expression of a novel bacterial enoyl-CoA hydratase/lyase enzyme function.
    Mayer MJ, Narbad A, Parr AJ, Parker ML, Walton NJ, Mellon FA, Michael AJ.
    Plant Cell; 2001 Jul 26; 13(7):1669-82. PubMed ID: 11449058
    [Abstract] [Full Text] [Related]

  • 16. Genetic engineering of Pseudomonas putida KT2440 for rapid and high-yield production of vanillin from ferulic acid.
    Graf N, Altenbuchner J.
    Appl Microbiol Biotechnol; 2014 Jan 26; 98(1):137-49. PubMed ID: 24136472
    [Abstract] [Full Text] [Related]

  • 17. Enoyl-CoA hydratase and isomerase form a superfamily with a common active-site glutamate residue.
    Müller-Newen G, Janssen U, Stoffel W.
    Eur J Biochem; 1995 Feb 15; 228(1):68-73. PubMed ID: 7883013
    [Abstract] [Full Text] [Related]

  • 18. Directing vanillin production from ferulic acid by increased acetyl-CoA consumption in recombinant Escherichia coli.
    Lee EG, Yoon SH, Das A, Lee SH, Li C, Kim JY, Choi MS, Oh DK, Kim SW.
    Biotechnol Bioeng; 2009 Jan 01; 102(1):200-8. PubMed ID: 18683263
    [Abstract] [Full Text] [Related]

  • 19. Glutamate-119 of the large alpha-subunit is the catalytic base in the hydration of 2-trans-enoyl-coenzyme A catalyzed by the multienzyme complex of fatty acid oxidation from Escherichia coli.
    He XY, Yang SY.
    Biochemistry; 1997 Sep 09; 36(36):11044-9. PubMed ID: 9283097
    [Abstract] [Full Text] [Related]

  • 20. Metabolic engineering of E. coli top 10 for production of vanillin through FA catabolic pathway and bioprocess optimization using RSM.
    Chakraborty D, Gupta G, Kaur B.
    Protein Expr Purif; 2016 Dec 09; 128():123-33. PubMed ID: 27591788
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.