These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


483 related items for PubMed ID: 9463368

  • 1. CFTR Cl- channel and CFTR-associated ATP channel: distinct pores regulated by common gates.
    Sugita M, Yue Y, Foskett JK.
    EMBO J; 1998 Feb 16; 17(4):898-908. PubMed ID: 9463368
    [Abstract] [Full Text] [Related]

  • 2. Protein kinase A regulates ATP hydrolysis and dimerization by a CFTR (cystic fibrosis transmembrane conductance regulator) domain.
    Howell LD, Borchardt R, Kole J, Kaz AM, Randak C, Cohn JA.
    Biochem J; 2004 Feb 15; 378(Pt 1):151-9. PubMed ID: 14602047
    [Abstract] [Full Text] [Related]

  • 3. Potentiation of cystic fibrosis transmembrane conductance regulator (CFTR) Cl- currents by the chemical solvent tetrahydrofuran.
    Hughes LK, Ju M, Sheppard DN.
    Mol Membr Biol; 2008 Sep 15; 25(6-7):528-38. PubMed ID: 18989824
    [Abstract] [Full Text] [Related]

  • 4. Regulation of the cystic fibrosis transmembrane conductance regulator chloride channel by MgATP.
    Welsh MJ, Anderson MP.
    Soc Gen Physiol Ser; 1993 Sep 15; 48():119-27. PubMed ID: 7684867
    [Abstract] [Full Text] [Related]

  • 5. Prolonged nonhydrolytic interaction of nucleotide with CFTR's NH2-terminal nucleotide binding domain and its role in channel gating.
    Basso C, Vergani P, Nairn AC, Gadsby DC.
    J Gen Physiol; 2003 Sep 15; 122(3):333-48. PubMed ID: 12939393
    [Abstract] [Full Text] [Related]

  • 6. Cl- absorption across the thick ascending limb is not altered in cystic fibrosis mice. A role for a pseudo-CFTR Cl- channel.
    Marvão P, De Jesus Ferreira MC, Bailly C, Paulais M, Bens M, Guinamard R, Moreau R, Vandewalle A, Teulon J.
    J Clin Invest; 1998 Dec 01; 102(11):1986-93. PubMed ID: 9835624
    [Abstract] [Full Text] [Related]

  • 7. Down-regulation of volume-sensitive Cl- channels by CFTR is mediated by the second nucleotide-binding domain.
    Ando-Akatsuka Y, Abdullaev IF, Lee EL, Okada Y, Sabirov RZ.
    Pflugers Arch; 2002 Nov 01; 445(2):177-86. PubMed ID: 12457238
    [Abstract] [Full Text] [Related]

  • 8. Inhibition of heterologously expressed cystic fibrosis transmembrane conductance regulator Cl- channels by non-sulphonylurea hypoglycaemic agents.
    Cai Z, Lansdell KA, Sheppard DN.
    Br J Pharmacol; 1999 Sep 01; 128(1):108-18. PubMed ID: 10498841
    [Abstract] [Full Text] [Related]

  • 9. Direct block of the cystic fibrosis transmembrane conductance regulator Cl(-) channel by niflumic acid.
    Scott-Ward TS, Li H, Schmidt A, Cai Z, Sheppard DN.
    Mol Membr Biol; 2004 Sep 01; 21(1):27-38. PubMed ID: 14668136
    [Abstract] [Full Text] [Related]

  • 10. CFTR-like chloride channels in non-ciliated bronchiolar epithelial (Clara) cells.
    Chinet TC, Gabriel SE, Penland CM, Sato M, Stutts MJ, Boucher RC, Van Scott MR.
    Biochem Biophys Res Commun; 1997 Jan 13; 230(2):470-5. PubMed ID: 9016805
    [Abstract] [Full Text] [Related]

  • 11. Stimulation of CFTR activity by its phosphorylated R domain.
    Winter MC, Welsh MJ.
    Nature; 1997 Sep 18; 389(6648):294-6. PubMed ID: 9305845
    [Abstract] [Full Text] [Related]

  • 12. Control of dynamic CFTR selectivity by glutamate and ATP in epithelial cells.
    Reddy MM, Quinton PM.
    Nature; 2003 Jun 12; 423(6941):756-60. PubMed ID: 12802335
    [Abstract] [Full Text] [Related]

  • 13. Walker mutations reveal loose relationship between catalytic and channel-gating activities of purified CFTR (cystic fibrosis transmembrane conductance regulator).
    Ramjeesingh M, Li C, Garami E, Huan LJ, Galley K, Wang Y, Bear CE.
    Biochemistry; 1999 Feb 02; 38(5):1463-8. PubMed ID: 9931011
    [Abstract] [Full Text] [Related]

  • 14. CFTR chloride channels in human and simian heart.
    Warth JD, Collier ML, Hart P, Geary Y, Gelband CH, Chapman T, Horowitz B, Hume JR.
    Cardiovasc Res; 1996 Apr 02; 31(4):615-24. PubMed ID: 8689654
    [Abstract] [Full Text] [Related]

  • 15. ATP hydrolysis cycles and the gating of CFTR Cl- channels.
    Gadsby DC, Dousmanis AG, Nairn AC.
    Acta Physiol Scand Suppl; 1998 Aug 02; 643():247-56. PubMed ID: 9789567
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Regulation of CFTR Cl- channel gating by ADP and ATP analogues.
    Schultz BD, Venglarik CJ, Bridges RJ, Frizzell RA.
    J Gen Physiol; 1995 Mar 02; 105(3):329-61. PubMed ID: 7539480
    [Abstract] [Full Text] [Related]

  • 18. Regulation of the gating of cystic fibrosis transmembrane conductance regulator C1 channels by phosphorylation and ATP hydrolysis.
    Hwang TC, Nagel G, Nairn AC, Gadsby DC.
    Proc Natl Acad Sci U S A; 1994 May 24; 91(11):4698-702. PubMed ID: 7515176
    [Abstract] [Full Text] [Related]

  • 19. Disease-associated mutations in cytoplasmic loops 1 and 2 of cystic fibrosis transmembrane conductance regulator impede processing or opening of the channel.
    Seibert FS, Jia Y, Mathews CJ, Hanrahan JW, Riordan JR, Loo TW, Clarke DM.
    Biochemistry; 1997 Sep 30; 36(39):11966-74. PubMed ID: 9305991
    [Abstract] [Full Text] [Related]

  • 20. Gating of cystic fibrosis transmembrane conductance regulator chloride channels by adenosine triphosphate hydrolysis. Quantitative analysis of a cyclic gating scheme.
    Zeltwanger S, Wang F, Wang GT, Gillis KD, Hwang TC.
    J Gen Physiol; 1999 Apr 30; 113(4):541-54. PubMed ID: 10102935
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 25.