These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
613 related items for PubMed ID: 9463462
1. Role of the human rostral supplementary motor area and the basal ganglia in motor sequence control: investigations with H2 15O PET. Boecker H, Dagher A, Ceballos-Baumann AO, Passingham RE, Samuel M, Friston KJ, Poline J, Dettmers C, Conrad B, Brooks DJ. J Neurophysiol; 1998 Feb; 79(2):1070-80. PubMed ID: 9463462 [Abstract] [Full Text] [Related]
2. Motor task difficulty and brain activity: investigation of goal-directed reciprocal aiming using positron emission tomography. Winstein CJ, Grafton ST, Pohl PS. J Neurophysiol; 1997 Mar; 77(3):1581-94. PubMed ID: 9084621 [Abstract] [Full Text] [Related]
3. A H(2)(15)O positron emission tomography study on mental imagery of movement sequences--the effect of modulating sequence length and direction. Boecker H, Ceballos-Baumann AO, Bartenstein P, Dagher A, Forster K, Haslinger B, Brooks DJ, Schwaiger M, Conrad B. Neuroimage; 2002 Oct; 17(2):999-1009. PubMed ID: 12377173 [Abstract] [Full Text] [Related]
4. Cerebral structures participating in motor preparation in humans: a positron emission tomography study. Deiber MP, Ibañez V, Sadato N, Hallett M. J Neurophysiol; 1996 Jan; 75(1):233-47. PubMed ID: 8822554 [Abstract] [Full Text] [Related]
5. Relation between cerebral activity and force in the motor areas of the human brain. Dettmers C, Fink GR, Lemon RN, Stephan KM, Passingham RE, Silbersweig D, Holmes A, Ridding MC, Brooks DJ, Frackowiak RS. J Neurophysiol; 1995 Aug; 74(2):802-15. PubMed ID: 7472384 [Abstract] [Full Text] [Related]
6. Cerebral control of unimanual and bimanual movements: an H2(15)O PET study. Goerres GW, Samuel M, Jenkins IH, Brooks DJ. Neuroreport; 1998 Nov 16; 9(16):3631-8. PubMed ID: 9858371 [Abstract] [Full Text] [Related]
7. Sensory processing in Parkinson's and Huntington's disease: investigations with 3D H(2)(15)O-PET. Boecker H, Ceballos-Baumann A, Bartenstein P, Weindl A, Siebner HR, Fassbender T, Munz F, Schwaiger M, Conrad B. Brain; 1999 Sep 16; 122 ( Pt 9)():1651-65. PubMed ID: 10468505 [Abstract] [Full Text] [Related]
8. Self-initiated versus externally triggered movements. II. The effect of movement predictability on regional cerebral blood flow. Jenkins IH, Jahanshahi M, Jueptner M, Passingham RE, Brooks DJ. Brain; 2000 Jun 16; 123 ( Pt 6)():1216-28. PubMed ID: 10825359 [Abstract] [Full Text] [Related]
9. Both primary motor cortex and supplementary motor area play an important role in complex finger movement. Shibasaki H, Sadato N, Lyshkow H, Yonekura Y, Honda M, Nagamine T, Suwazono S, Magata Y, Ikeda A, Miyazaki M. Brain; 1993 Dec 16; 116 ( Pt 6)():1387-98. PubMed ID: 8293277 [Abstract] [Full Text] [Related]
10. Regional cerebral blood flow during a self-paced sequential finger opposition task in patients with cerebellar degeneration. Wessel K, Zeffiro T, Lou JS, Toro C, Hallett M. Brain; 1995 Apr 16; 118 ( Pt 2)():379-93. PubMed ID: 7735880 [Abstract] [Full Text] [Related]
12. Changes in regional cerebral blood flow during self-paced arm and finger movements. A PET study. Kawashima R, Itoh H, Ono S, Satoh K, Furumoto S, Gotoh R, Koyama M, Yoshioka S, Takahashi T, Takahashi K, Yanagisawa T, Fukuda H. Brain Res; 1996 Apr 15; 716(1-2):141-8. PubMed ID: 8738230 [Abstract] [Full Text] [Related]
13. Brain activity correlates differentially with increasing temporal complexity of rhythms during initialisation, synchronisation, and continuation phases of paced finger tapping. Lewis PA, Wing AM, Pope PA, Praamstra P, Miall RC. Neuropsychologia; 2004 Apr 15; 42(10):1301-12. PubMed ID: 15193939 [Abstract] [Full Text] [Related]
14. Frontal and parietal networks for conditional motor learning: a positron emission tomography study. Deiber MP, Wise SP, Honda M, Catalan MJ, Grafman J, Hallett M. J Neurophysiol; 1997 Aug 15; 78(2):977-91. PubMed ID: 9307128 [Abstract] [Full Text] [Related]
15. Fast reaction to different sensory modalities activates common fields in the motor areas, but the anterior cingulate cortex is involved in the speed of reaction. Naito E, Kinomura S, Geyer S, Kawashima R, Roland PE, Zilles K. J Neurophysiol; 2000 Mar 15; 83(3):1701-9. PubMed ID: 10712490 [Abstract] [Full Text] [Related]
16. The role of cerebral cortex in the generation of voluntary saccades: a positron emission tomographic study. Fox PT, Fox JM, Raichle ME, Burde RM. J Neurophysiol; 1985 Aug 15; 54(2):348-69. PubMed ID: 3875696 [Abstract] [Full Text] [Related]
17. Dorsal premotor cortex and conditional movement selection: A PET functional mapping study. Grafton ST, Fagg AH, Arbib MA. J Neurophysiol; 1998 Feb 15; 79(2):1092-7. PubMed ID: 9463464 [Abstract] [Full Text] [Related]
18. Positron emission tomography study of voluntary saccadic eye movements and spatial working memory. Sweeney JA, Mintun MA, Kwee S, Wiseman MB, Brown DL, Rosenberg DR, Carl JR. J Neurophysiol; 1996 Jan 15; 75(1):454-68. PubMed ID: 8822570 [Abstract] [Full Text] [Related]
19. Identification of the cerebral loci processing human swallowing with H2(15)O PET activation. Hamdy S, Rothwell JC, Brooks DJ, Bailey D, Aziz Q, Thompson DG. J Neurophysiol; 1999 Apr 15; 81(4):1917-26. PubMed ID: 10200226 [Abstract] [Full Text] [Related]
20. Comparison of auditory, somatosensory, and visually instructed and internally generated finger movements: a PET study. Weeks RA, Honda M, Catalan MJ, Hallett M. Neuroimage; 2001 Jul 15; 14(1 Pt 1):219-30. PubMed ID: 11525332 [Abstract] [Full Text] [Related] Page: [Next] [New Search]