These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
152 related items for PubMed ID: 9471962
1. Reduction of 3-chlorobenzoate, 3-bromobenzoate, and benzoate to corresponding alcohols by Desulfomicrobium escambiense, isolated from a 3-chlorobenzoate-dechlorinating coculture. Genthner BR, Townsend GT, Blattmann BO. Appl Environ Microbiol; 1997 Dec; 63(12):4698-703. PubMed ID: 9471962 [Abstract] [Full Text] [Related]
3. Anaerobic degradation of 3-halobenzoates by a denitrifying bacterium. Häggblom MM, Young LY. Arch Microbiol; 1999 Mar; 171(4):230-6. PubMed ID: 10339806 [Abstract] [Full Text] [Related]
4. Anaerobic degradation of halogenated benzoic acids by photoheterotrophic bacteria. van der Woude BJ, de Boer M, van der Put NM, van der Geld FM, Prins RA, Gottschal JC. FEMS Microbiol Lett; 1994 Jun 01; 119(1-2):199-207. PubMed ID: 8039661 [Abstract] [Full Text] [Related]
5. Description of strain 3CB-1, a genomovar of Thauera aromatica, capable of degrading 3-chlorobenzoate coupled to nitrate reduction. Song B, Palleroni NJ, Häggblom MM. Int J Syst Evol Microbiol; 2000 Mar 01; 50 Pt 2():551-558. PubMed ID: 10758860 [Abstract] [Full Text] [Related]
6. Growth yield increase linked to reductive dechlorination in a defined 3-chlorobenzoate degrading methanogenic coculture. Dolfing J, Tiedje JM. Arch Microbiol; 1987 Mar 01; 149(2):102-5. PubMed ID: 3442447 [Abstract] [Full Text] [Related]
7. Characterization of bacterial consortia capable of degrading 4-chlorobenzoate and 4-bromobenzoate under denitrifying conditions. Song B, Kerkhof LJ, Häggblom MM. FEMS Microbiol Lett; 2002 Aug 06; 213(2):183-8. PubMed ID: 12167535 [Abstract] [Full Text] [Related]
8. Mineralization of monofluorobenzoate by a diculture under sulfate-reducing conditions. Drzyzga O, Jannsen S, Blotevogel KH. FEMS Microbiol Lett; 1994 Feb 15; 116(2):215-9. PubMed ID: 8150266 [Abstract] [Full Text] [Related]
9. Degradation of 2-bromo-, 2-chloro- and 2-fluorobenzoate by Pseudomonas putida CLB 250. Engesser KH, Schulte P. FEMS Microbiol Lett; 1989 Jul 15; 51(1):143-7. PubMed ID: 2777062 [Abstract] [Full Text] [Related]
10. The chlorobenzoate dioxygenase genes of Burkholderia sp. strain NK8 involved in the catabolism of chlorobenzoates. Francisco P, Ogawa N, Suzuki K, Miyashita K. Microbiology (Reading); 2001 Jan 15; 147(Pt 1):121-33. PubMed ID: 11160806 [Abstract] [Full Text] [Related]
11. Complete oxidation of benzoate and 4-hydroxybenzoate by a new sulfate-reducing bacterium resembling Desulfoarculus. Drzyzga O, Küver J, Blotevogel KH. Arch Microbiol; 1993 Jan 15; 159(2):109-13. PubMed ID: 8439232 [Abstract] [Full Text] [Related]
12. The anaerobic degradation of 3-chloro-4-hydroxybenzoate in freshwater sediment proceeds via either chlorophenol or hydroxybenzoate to phenol and subsequently to benzoate. Zhang X, Wiegel J. Appl Environ Microbiol; 1992 Nov 15; 58(11):3580-5. PubMed ID: 1482180 [Abstract] [Full Text] [Related]
13. Reductive dechlorination of 2,4-dichlorobenzoate to 4-chlorobenzoate and hydrolytic dehalogenation of 4-chloro-, 4-bromo-, and 4-iodobenzoate by Alcaligenes denitrificans NTB-1. van den Tweel WJ, Kok JB, de Bont JA. Appl Environ Microbiol; 1987 Apr 15; 53(4):810-5. PubMed ID: 3579283 [Abstract] [Full Text] [Related]
14. Effect of long-term exposure, biogenic substrate presence, and electron acceptor conditions on the biodegradation of multiple substituted benzoates and phenolates. Hu Z, Ferraina RA, Ericson JF, Smets BF. Water Res; 2005 Sep 15; 39(15):3501-10. PubMed ID: 16051311 [Abstract] [Full Text] [Related]
15. Variation in the ability of Pseudomonas sp. strain B13 cultures to utilize meta-chlorobenzoate is associated with tandem amplification and deamplification of DNA. Rangnekar VM. J Bacteriol; 1988 Apr 15; 170(4):1907-12. PubMed ID: 2832387 [Abstract] [Full Text] [Related]
16. Reductive dechlorination of 3-chlorobenzoate is coupled to ATP production and growth in an anaerobic bacterium, strain DCB-1. Dolfing J. Arch Microbiol; 1990 Apr 15; 153(3):264-6. PubMed ID: 2334248 [Abstract] [Full Text] [Related]
17. Strain DCB-1 conserves energy for growth from reductive dechlorination coupled to formate oxidation. Mohn WW, Tiedje JM. Arch Microbiol; 1990 Apr 15; 153(3):267-71. PubMed ID: 2334249 [Abstract] [Full Text] [Related]