These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Biological treatment of N-nitrosodimethylamine (NDMA) and N-nitrodimethylamine (NTDMA) in a field-scale fluidized bed bioreactor. Hatzinger PB, Lewis C, Webster TS. Water Res; 2017 Dec 01; 126():361-371. PubMed ID: 28972939 [Abstract] [Full Text] [Related]
4. Enhanced degradation of chlorinated ethylenes in groundwater from a paint contaminated site by two-stage fluidized-bed reactor. Ohlen K, Chang YK, Hegemann W, Yin CR, Lee ST. Chemosphere; 2005 Jan 01; 58(3):373-7. PubMed ID: 15581940 [Abstract] [Full Text] [Related]
5. Upflow anaerobic sludge blanket reactor--a review. Bal AS, Dhagat NN. Indian J Environ Health; 2001 Apr 01; 43(2):1-82. PubMed ID: 12397675 [Abstract] [Full Text] [Related]
6. Complete reductive dechlorination of trichloroethene by a groundwater microbial consortium. Bolesch DG, Nielsen RB, Keasling JD. Ann N Y Acad Sci; 1997 Nov 21; 829():97-102. PubMed ID: 9472315 [Abstract] [Full Text] [Related]
7. Rate limiting factors in trichloroethylene co-metabolic degradation by phenol-grown aerobic granules. Zhang Y, Tay JH. Biodegradation; 2014 Apr 21; 25(2):227-37. PubMed ID: 23846132 [Abstract] [Full Text] [Related]
8. Trichloroethylene (TCE) removal in a single pulse suspension bioreactor. Volcík V, Hoffmann J, Růzicka J, Sergejevová M. J Environ Manage; 2005 Mar 21; 74(4):293-304. PubMed ID: 15737454 [Abstract] [Full Text] [Related]
9. Pilot-scale demonstration of a two-stage methanotrophic bioreactor for biodegradation of trichloroethylene in groundwater. Dobbins DC, Peltola J, Kustritz JM, Chresand TJ, Preston JC. J Air Waste Manag Assoc; 1995 Jan 21; 45(1):12-9. PubMed ID: 15658162 [Abstract] [Full Text] [Related]
10. Effects of aeration and organic loading rates on degradation of trichloroethylene in a methanogenic-methanotrophic coupled reactor. Lyew D, Guiot S. Appl Microbiol Biotechnol; 2003 May 21; 61(3):206-13. PubMed ID: 12698277 [Abstract] [Full Text] [Related]
12. Co-metabolic degradation activities of trichloroethylene by phenol-grown aerobic granules. Zhang Y, Tay JH. J Biotechnol; 2012 Dec 31; 162(2-3):274-82. PubMed ID: 23026554 [Abstract] [Full Text] [Related]
13. Development of an attached-growth process for the on-site bioremediation of an aquifer polluted by chlorinated solvents. Frascari D, Bucchi G, Doria F, Rosato A, Tavanaie N, Salviulo R, Ciavarelli R, Pinelli D, Fraraccio S, Zanaroli G, Fava F. Biodegradation; 2014 Jun 31; 25(3):337-50. PubMed ID: 24096531 [Abstract] [Full Text] [Related]
15. Aerobic biodegradation of trichloroethylene and phenol co-contaminants in groundwater by a bacterial community using hydrogen peroxide as the sole oxygen source. Li H, Zhang SY, Wang XL, Yang J, Gu JD, Zhu RL, Wang P, Lin KF, Liu YD. Environ Technol; 2015 Jun 31; 36(5-8):667-74. PubMed ID: 25220534 [Abstract] [Full Text] [Related]
16. Performance characterization of a model bioreactor for the biodegradation of trichloroethylene by Pseudomonas cepacia G4. Folsom BR, Chapman PJ. Appl Environ Microbiol; 1991 Jun 31; 57(6):1602-8. PubMed ID: 1872599 [Abstract] [Full Text] [Related]
18. Group-specific monitoring of phenol hydroxylase genes for a functional assessment of phenol-stimulated trichloroethylene bioremediation. Futamata H, Harayama S, Watanabe K. Appl Environ Microbiol; 2001 Oct 31; 67(10):4671-7. PubMed ID: 11571171 [Abstract] [Full Text] [Related]