These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
147 related items for PubMed ID: 9473296
1. A conserved proline-rich sequence between the N-terminal signal-anchor and catalytic domains is required for assembly of functional cytochrome P450 2C2. Chen CD, Doray B, Kemper B. Arch Biochem Biophys; 1998 Feb 15; 350(2):233-8. PubMed ID: 9473296 [Abstract] [Full Text] [Related]
2. Efficient assembly of functional cytochrome P450 2C2 requires a spacer sequence between the N-terminal signal anchor and catalytic domains. Chen CD, Doray B, Kemper B. J Biol Chem; 1997 Sep 05; 272(36):22891-7. PubMed ID: 9278452 [Abstract] [Full Text] [Related]
3. Substitutions in the C-terminal portion of the catalytic domain partially reverse assembly defects introduced by mutations in the N-terminal linker sequence of cytochrome P450 2C2. Doray B, Chen CD, Kemper B. Biochemistry; 1999 Sep 14; 38(37):12180-6. PubMed ID: 10508423 [Abstract] [Full Text] [Related]
4. N-terminal deletions and His-tag fusions dramatically affect expression of cytochrome p450 2C2 in bacteria. Doray B, Chen CD, Kemper B. Arch Biochem Biophys; 2001 Sep 01; 393(1):143-53. PubMed ID: 11516171 [Abstract] [Full Text] [Related]
5. Hydrophobic side chain requirements for lauric acid and progesterone hydroxylation at amino acid 113 in cytochrome P450 2C2, a potential determinant of substrate specificity. Straub P, Johnson EF, Kemper B. Arch Biochem Biophys; 1993 Nov 01; 306(2):521-7. PubMed ID: 8215458 [Abstract] [Full Text] [Related]
6. Different structural requirements at specific proline residue positions in the conserved proline-rich region of cytochrome P450 2C2. Chen CD, Kemper B. J Biol Chem; 1996 Nov 08; 271(45):28607-11. PubMed ID: 8910491 [Abstract] [Full Text] [Related]
7. Substitution at residue 473 confers progesterone 21-hydroxylase activity to cytochrome P450 2C2. Ramarao M, Kemper B. Mol Pharmacol; 1995 Sep 08; 48(3):417-24. PubMed ID: 7565621 [Abstract] [Full Text] [Related]
8. Baculovirus expression of human P450 2E1 and cytochrome b5: spectral and catalytic properties and effect of b5 on the stoichiometry of P450 2E1-catalyzed reactions. Patten CJ, Koch P. Arch Biochem Biophys; 1995 Mar 10; 317(2):504-13. PubMed ID: 7893169 [Abstract] [Full Text] [Related]
9. Structural basis for the role in protein folding of conserved proline-rich regions in cytochromes P450. Kemper B. Toxicol Appl Pharmacol; 2004 Sep 15; 199(3):305-15. PubMed ID: 15364546 [Abstract] [Full Text] [Related]
10. Bimolecular fluorescence complementation analysis of cytochrome p450 2c2, 2e1, and NADPH-cytochrome p450 reductase molecular interactions in living cells. Ozalp C, Szczesna-Skorupa E, Kemper B. Drug Metab Dispos; 2005 Sep 15; 33(9):1382-90. PubMed ID: 15980100 [Abstract] [Full Text] [Related]
11. Identification of three key residues in substrate recognition site 5 of human cytochrome P450 3A4 by cassette and site-directed mutagenesis. He YA, He YQ, Szklarz GD, Halpert JR. Biochemistry; 1997 Jul 22; 36(29):8831-9. PubMed ID: 9220969 [Abstract] [Full Text] [Related]
12. Kinetics of the reduction of cytochrome b5 with mutations in its membrane-binding domain. Wu FF, Vergères G, Waskell L. Arch Biochem Biophys; 1994 Feb 01; 308(2):380-6. PubMed ID: 7906503 [Abstract] [Full Text] [Related]
13. Site-directed mutagenesis of the putative distal helix of peroxygenase cytochrome P450. Matsunaga I, Ueda A, Sumimoto T, Ichihara K, Ayata M, Ogura H. Arch Biochem Biophys; 2001 Oct 01; 394(1):45-53. PubMed ID: 11566026 [Abstract] [Full Text] [Related]
14. Importance of successive prolines in the carboxy-terminal region of P450 2C2 and P450 2C14 for the hydroxylase activities. Uno T, Imai Y, Nakamura M, Okamoto N, Fukuda T. J Biochem; 1993 Sep 01; 114(3):363-9. PubMed ID: 8282727 [Abstract] [Full Text] [Related]
15. Identification of a meander region proline residue critical for heme binding to cytochrome P450: implications for the catalytic function of human CYP4B1. Zheng YM, Fisher MB, Yokotani N, Fujii-Kuriyama Y, Rettie AE. Biochemistry; 1998 Sep 15; 37(37):12847-51. PubMed ID: 9737862 [Abstract] [Full Text] [Related]
16. Identification of membrane-contacting loops of the catalytic domain of cytochrome P450 2C2 by tryptophan fluorescence scanning. Ozalp C, Szczesna-Skorupa E, Kemper B. Biochemistry; 2006 Apr 11; 45(14):4629-37. PubMed ID: 16584198 [Abstract] [Full Text] [Related]
17. Analysis of four residues within substrate recognition site 4 of human cytochrome P450 3A4: role in steroid hydroxylase activity and alpha-naphthoflavone stimulation. Domanski TL, Liu J, Harlow GR, Halpert JR. Arch Biochem Biophys; 1998 Feb 15; 350(2):223-32. PubMed ID: 9473295 [Abstract] [Full Text] [Related]
18. Preference for aromatic substitutions at tryptophan-120, which is highly conserved and a potential mediator of electron transfer in cytochrome P450 2C2. Straub P, Ramarao MK, Kemper B. Biochem Biophys Res Commun; 1993 Dec 15; 197(2):433-9. PubMed ID: 8267578 [Abstract] [Full Text] [Related]
19. Identification of rabbit cytochromes P450 2C1 and 2C2 as arachidonic acid epoxygenases. Laethem RM, Koop DR. Mol Pharmacol; 1992 Dec 15; 42(6):958-63. PubMed ID: 1480136 [Abstract] [Full Text] [Related]
20. The kinetic and spectral characterization of the E. coli-expressed mammalian CYP4A7: cytochrome b5 effects vary with substrate. Loughran PA, Roman LJ, Miller RT, Masters BS. Arch Biochem Biophys; 2001 Jan 15; 385(2):311-21. PubMed ID: 11368012 [Abstract] [Full Text] [Related] Page: [Next] [New Search]