These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


340 related items for PubMed ID: 9474003

  • 61. Brain mechanisms of pain relief by transcutaneous electrical nerve stimulation: A functional magnetic resonance imaging study.
    Choi JC, Kim J, Kang E, Lee JM, Cha J, Kim YJ, Lee HG, Choi JH, Yi DJ.
    Eur J Pain; 2016 Jan; 20(1):92-105. PubMed ID: 25847717
    [Abstract] [Full Text] [Related]

  • 62. Modulation of temporal summation threshold of the nociceptive withdrawal reflex by transcutaneous spinal direct current stimulation in humans.
    Perrotta A, Bolla M, Anastasio MG, Serrao M, Sandrini G, Pierelli F.
    Clin Neurophysiol; 2016 Jan; 127(1):755-761. PubMed ID: 25777061
    [Abstract] [Full Text] [Related]

  • 63. Increase in muscular pain threshold following low frequency-high intensity peripheral conditioning stimulation in humans.
    Duranti R, Pantaleo T, Bellini F.
    Brain Res; 1988 Jun 14; 452(1-2):66-72. PubMed ID: 3261195
    [Abstract] [Full Text] [Related]

  • 64. An investigation into the hypoalgesic effects of high- and low-frequency transcutaneous electrical nerve stimulation (TENS) on experimentally-induced blunt pressure pain in healthy human participants.
    Chen CC, Johnson MI.
    J Pain; 2010 Jan 14; 11(1):53-61. PubMed ID: 19665936
    [Abstract] [Full Text] [Related]

  • 65. Acoustic startle stimuli inhibit pain but do not alter nociceptive flexion reflexes to sural nerve stimulation.
    English A, Drummond PD.
    Psychophysiology; 2021 Apr 14; 58(4):e13757. PubMed ID: 33448016
    [Abstract] [Full Text] [Related]

  • 66.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 67.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 68. Effects of Electrical Transcutaneous Vagus Nerve Stimulation on the Perceived Intensity of Repetitive Painful Heat Stimuli: A Blinded Placebo- and Sham-Controlled Randomized Crossover Investigation.
    Janner H, Klausenitz C, Gürtler N, Hahnenkamp K, Usichenko TI.
    Anesth Analg; 2018 Jun 14; 126(6):2085-2092. PubMed ID: 29337730
    [Abstract] [Full Text] [Related]

  • 69. Beep tones attenuate pain following Pavlovian conditioning of an endogenous pain control mechanism.
    Scheuren R, Anton F, Erpelding N, Michaux G.
    PLoS One; 2014 Jun 14; 9(2):e88710. PubMed ID: 24551138
    [Abstract] [Full Text] [Related]

  • 70. Neuromuscular and biomechanical coupling in human cycling: modulation of cutaneous reflex responses to sural nerve stimulation.
    Mileva K, Green DA, Turner DL.
    Exp Brain Res; 2004 Oct 14; 158(4):450-64. PubMed ID: 15221175
    [Abstract] [Full Text] [Related]

  • 71. Transcutaneous electrical nerve stimulation and transcutaneous spinal electroanalgesia: a preliminary efficacy and mechanisms-based investigation.
    Palmer S, Cramp F, Propert K, Godfrey H.
    Physiotherapy; 2009 Sep 14; 95(3):185-91. PubMed ID: 19635338
    [Abstract] [Full Text] [Related]

  • 72. Neurobiological mechanisms of TENS-induced analgesia.
    Peng WW, Tang ZY, Zhang FR, Li H, Kong YZ, Iannetti GD, Hu L.
    Neuroimage; 2019 Jul 15; 195():396-408. PubMed ID: 30946953
    [Abstract] [Full Text] [Related]

  • 73. Inhibitory effect of pain-eliciting transcutaneous electrical stimulation on vibration-induced finger flexion reflex in the human upper limb.
    Takakura N, Yajima H, Homma I.
    Jpn J Physiol; 2004 Jun 15; 54(3):243-8. PubMed ID: 15541202
    [Abstract] [Full Text] [Related]

  • 74. Interaction of a combination of morphine and ketamine on the nociceptive flexion reflex in human volunteers.
    Bossard AE, Guirimand F, Fletcher D, Gaude-Joindreau V, Chauvin M, Bouhassira D.
    Pain; 2002 Jul 15; 98(1-2):47-57. PubMed ID: 12098616
    [Abstract] [Full Text] [Related]

  • 75. Transcutaneous electrical nerve stimulation: nonparallel antinociceptive effects on chronic clinical pain and acute experimental pain.
    Cheing GL, Hui-Chan CW.
    Arch Phys Med Rehabil; 1999 Mar 15; 80(3):305-12. PubMed ID: 10084439
    [Abstract] [Full Text] [Related]

  • 76. Depression of the human nociceptive withdrawal reflex by segmental and heterosegmental intramuscular electrical stimulation.
    Ge HY, Collet T, Mørch CD, Arendt-Nielsen L, Andersen OK.
    Clin Neurophysiol; 2007 Jul 15; 118(7):1626-32. PubMed ID: 17507291
    [Abstract] [Full Text] [Related]

  • 77. Is temporal summation of pain and spinal nociception altered during normal aging?
    Marouf R, Piché M, Rainville P.
    Pain; 2015 Oct 15; 156(10):1945-1953. PubMed ID: 26058038
    [Abstract] [Full Text] [Related]

  • 78. Control over spinal nociception as quantified by the nociceptive flexor reflex (RIII reflex) can be achieved under feedback of the RIII reflex.
    Ruscheweyh R, Weinges F, Schiffer M, Bäumler M, Feller M, Krafft S, Straube A, Sommer J, Marziniak M.
    Eur J Pain; 2015 Apr 15; 19(4):480-9. PubMed ID: 25074510
    [Abstract] [Full Text] [Related]

  • 79. Long-term facilitation of nociceptive withdrawal reflexes following low-frequency conditioning electrical stimulation: a new model for central sensitization in humans.
    Biurrun Manresa JA, Mørch CD, Andersen OK.
    Eur J Pain; 2010 Sep 15; 14(8):822-31. PubMed ID: 20110183
    [Abstract] [Full Text] [Related]

  • 80. Facilitation of the human nociceptive reflex by stimulation of A beta-fibres in a secondary hyperalgesic area sustained by nociceptive input from the primary hyperalgesic area.
    Andersen OK, Gracely RH, Arendt-Nielsen L.
    Acta Physiol Scand; 1995 Sep 15; 155(1):87-97. PubMed ID: 8553881
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 17.