These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


183 related items for PubMed ID: 9477944

  • 1. Complementary truncations of a hydrogen bond to ribose involved in transition-state stabilization by cytidine deaminase.
    Carlow DC, Short SA, Wolfenden R.
    Biochemistry; 1998 Feb 03; 37(5):1199-203. PubMed ID: 9477944
    [Abstract] [Full Text] [Related]

  • 2. Major contribution of a carboxymethyl group to transition-state stabilization by cytidine deaminase: mutation and rescue.
    Carlow DC, Smith AA, Yang CC, Short SA, Wolfenden R.
    Biochemistry; 1995 Apr 04; 34(13):4220-4. PubMed ID: 7703234
    [Abstract] [Full Text] [Related]

  • 3. Cytidine deaminase. The 2.3 A crystal structure of an enzyme: transition-state analog complex.
    Betts L, Xiang S, Short SA, Wolfenden R, Carter CW.
    J Mol Biol; 1994 Jan 14; 235(2):635-56. PubMed ID: 8289286
    [Abstract] [Full Text] [Related]

  • 4. Substrate connectivity effects in the transition state for cytidine deaminase.
    Carlow D, Wolfenden R.
    Biochemistry; 1998 Aug 25; 37(34):11873-8. PubMed ID: 9718310
    [Abstract] [Full Text] [Related]

  • 5. Role of glutamate-104 in generating a transition state analogue inhibitor at the active site of cytidine deaminase.
    Carlow DC, Short SA, Wolfenden R.
    Biochemistry; 1996 Jan 23; 35(3):948-54. PubMed ID: 8547277
    [Abstract] [Full Text] [Related]

  • 6. The structure of the cytidine deaminase-product complex provides evidence for efficient proton transfer and ground-state destabilization.
    Xiang S, Short SA, Wolfenden R, Carter CW.
    Biochemistry; 1997 Apr 22; 36(16):4768-74. PubMed ID: 9125497
    [Abstract] [Full Text] [Related]

  • 7. Cytidine deaminase complexed to 3-deazacytidine: a "valence buffer" in zinc enzyme catalysis.
    Xiang S, Short SA, Wolfenden R, Carter CW.
    Biochemistry; 1996 Feb 06; 35(5):1335-41. PubMed ID: 8634261
    [Abstract] [Full Text] [Related]

  • 8. Site-directed mutagenesis of histidine-90 in Escherichia coli L-threonine dehydrogenase alters its substrate specificity.
    Johnson AR, Dekker EE.
    Arch Biochem Biophys; 1998 Mar 01; 351(1):8-16. PubMed ID: 9500838
    [Abstract] [Full Text] [Related]

  • 9. Modulation of human cytidine deaminase by specific aminoacids involved in the intersubunit interactions.
    Vincenzetti S, Quadrini B, Mariani P, De Sanctis G, Cammertoni N, Polzonetti V, Pucciarelli S, Natalini P, Vita A.
    Proteins; 2008 Jan 01; 70(1):144-56. PubMed ID: 17640070
    [Abstract] [Full Text] [Related]

  • 10. Catalysis by entropic effects: the action of cytidine deaminase on 5,6-dihydrocytidine.
    Snider MJ, Lazarevic D, Wolfenden R.
    Biochemistry; 2002 Mar 26; 41(12):3925-30. PubMed ID: 11900535
    [Abstract] [Full Text] [Related]

  • 11. Alkylated cytosine nucleosides: substrate and inhibitor properties in enzymatic deamination.
    Krajewska E, Shugar D.
    Acta Biochim Pol; 1975 Mar 26; 22(2):185-94. PubMed ID: 1098340
    [Abstract] [Full Text] [Related]

  • 12. Mechanism of activation of acyl-CoA substrates by medium chain acyl-CoA dehydrogenase: interaction of the thioester carbonyl with the flavin adenine dinucleotide ribityl side chain.
    Engst S, Vock P, Wang M, Kim JJ, Ghisla S.
    Biochemistry; 1999 Jan 05; 38(1):257-67. PubMed ID: 9890906
    [Abstract] [Full Text] [Related]

  • 13. Enzyme-substrate complexes of adenosine and cytidine deaminases: absence of accumulation of water adducts.
    Shih P, Wolfenden R.
    Biochemistry; 1996 Apr 16; 35(15):4697-703. PubMed ID: 8664259
    [Abstract] [Full Text] [Related]

  • 14. Probing hydrogen-bonding interactions in the active site of medium-chain acyl-CoA dehydrogenase using Raman spectroscopy.
    Wu J, Bell AF, Luo L, Stephens AW, Stankovich MT, Tonge PJ.
    Biochemistry; 2003 Oct 14; 42(40):11846-56. PubMed ID: 14529297
    [Abstract] [Full Text] [Related]

  • 15. A residue to residue hydrogen bond mediates the nucleotide specificity of ribonuclease A.
    delCardayré SB, Raines RT.
    J Mol Biol; 1995 Sep 22; 252(3):328-36. PubMed ID: 7563054
    [Abstract] [Full Text] [Related]

  • 16. His-357 of beta-galactosidase (Escherichia coli) interacts with the C3 hydroxyl in the transition state and helps to mediate catalysis.
    Roth NJ, Rob B, Huber RE.
    Biochemistry; 1998 Jul 14; 37(28):10099-107. PubMed ID: 9665715
    [Abstract] [Full Text] [Related]

  • 17. A quantum chemical study of the catalysis for cytidine deaminase: contribution of the extra water molecule.
    Matsubara T, Ishikura M, Aida M.
    J Chem Inf Model; 2006 Jul 14; 46(3):1276-85. PubMed ID: 16711747
    [Abstract] [Full Text] [Related]

  • 18. A double role for a strictly conserved serine: further insights into the dUTPase catalytic mechanism.
    Palmén LG, Becker K, Bülow L, Kvassman JO.
    Biochemistry; 2008 Jul 29; 47(30):7863-74. PubMed ID: 18597482
    [Abstract] [Full Text] [Related]

  • 19. Evidence that serine 304 is not a key ligand-binding residue in the active site of cytochrome P450 2D6.
    Ellis SW, Hayhurst GP, Lightfoot T, Smith G, Harlow J, Rowland-Yeo K, Larsson C, Mahling J, Lim CK, Wolf CR, Blackburn MG, Lennard MS, Tucker GT.
    Biochem J; 2000 Feb 01; 345 Pt 3(Pt 3):565-71. PubMed ID: 10642515
    [Abstract] [Full Text] [Related]

  • 20. Recruitment of both uniform and differential binding energy in enzymatic catalysis: xylanases from families 10 and 11.
    Wicki J, Schloegl J, Tarling CA, Withers SG.
    Biochemistry; 2007 Jun 12; 46(23):6996-7005. PubMed ID: 17503782
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.