These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
242 related items for PubMed ID: 9477970
1. An additional methyl group at the 10-position of retinal dramatically slows down the kinetics of the rhodopsin photocascade. DeLange F, Bovee-Geurts PH, VanOostrum J, Portier MD, Verdegem PJ, Lugtenburg J, DeGrip WJ. Biochemistry; 1998 Feb 03; 37(5):1411-20. PubMed ID: 9477970 [Abstract] [Full Text] [Related]
7. Characterization of the mutant visual pigment responsible for congenital night blindness: a biochemical and Fourier-transform infrared spectroscopy study. Zvyaga TA, Fahmy K, Siebert F, Sakmar TP. Biochemistry; 1996 Jun 11; 35(23):7536-45. PubMed ID: 8652533 [Abstract] [Full Text] [Related]
8. Role of the 9-methyl group of retinal in cone visual pigments. Das J, Crouch RK, Ma JX, Oprian DD, Kono M. Biochemistry; 2004 May 11; 43(18):5532-8. PubMed ID: 15122919 [Abstract] [Full Text] [Related]
9. A dark and constitutively active mutant of the tiger salamander UV pigment. Kono M, Crouch RK, Oprian DD. Biochemistry; 2005 Jan 18; 44(2):799-804. PubMed ID: 15641808 [Abstract] [Full Text] [Related]
10. The C9 methyl group of retinal interacts with glycine-121 in rhodopsin. Han M, Groesbeek M, Sakmar TP, Smith SO. Proc Natl Acad Sci U S A; 1997 Dec 09; 94(25):13442-7. PubMed ID: 9391044 [Abstract] [Full Text] [Related]
11. Modulation of opsin apoprotein activity by retinal. Dark activity of rhodopsin formed at low temperature. Surya A, Knox BE. J Biol Chem; 1997 Aug 29; 272(35):21745-50. PubMed ID: 9268303 [Abstract] [Full Text] [Related]
13. Protonation states of membrane-embedded carboxylic acid groups in rhodopsin and metarhodopsin II: a Fourier-transform infrared spectroscopy study of site-directed mutants. Fahmy K, Jäger F, Beck M, Zvyaga TA, Sakmar TP, Siebert F. Proc Natl Acad Sci U S A; 1993 Nov 01; 90(21):10206-10. PubMed ID: 7901852 [Abstract] [Full Text] [Related]
14. Transition of rhodopsin into the active metarhodopsin II state opens a new light-induced pathway linked to Schiff base isomerization. Ritter E, Zimmermann K, Heck M, Hofmann KP, Bartl FJ. J Biol Chem; 2004 Nov 12; 279(46):48102-11. PubMed ID: 15322129 [Abstract] [Full Text] [Related]
15. Retinal analog study of the role of steric interactions in the excited state isomerization dynamics of rhodopsin. Kochendoerfer GG, Verdegem PJ, van der Hoef I, Lugtenburg J, Mathies RA. Biochemistry; 1996 Dec 17; 35(50):16230-40. PubMed ID: 8973196 [Abstract] [Full Text] [Related]
16. The nature of the primary photochemical events in rhodopsin and isorhodopsin. Birge RR, Einterz CM, Knapp HM, Murray LP. Biophys J; 1988 Mar 17; 53(3):367-85. PubMed ID: 2964878 [Abstract] [Full Text] [Related]
17. Steric barrier to bathorhodopsin decay in 5-demethyl and mesityl analogues of rhodopsin. Lewis JW, Fan GB, Sheves M, Szundi I, Kliger DS. J Am Chem Soc; 2001 Oct 17; 123(41):10024-9. PubMed ID: 11592880 [Abstract] [Full Text] [Related]
19. Signaling states of rhodopsin. Formation of the storage form, metarhodopsin III, from active metarhodopsin II. Heck M, Schädel SA, Maretzki D, Bartl FJ, Ritter E, Palczewski K, Hofmann KP. J Biol Chem; 2003 Jan 31; 278(5):3162-9. PubMed ID: 12427735 [Abstract] [Full Text] [Related]