These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


144 related items for PubMed ID: 9485380

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Sizing membrane pores in lipid vesicles by leakage of co-encapsulated markers: pore formation by melittin.
    Ladokhin AS, Selsted ME, White SH.
    Biophys J; 1997 Apr; 72(4):1762-6. PubMed ID: 9083680
    [Abstract] [Full Text] [Related]

  • 7. Kinetics of melittin induced pore formation in the membrane of lipid vesicles.
    Schwarz G, Zong RT, Popescu T.
    Biochim Biophys Acta; 1992 Sep 21; 1110(1):97-104. PubMed ID: 1390840
    [Abstract] [Full Text] [Related]

  • 8. Study of vesicle leakage induced by melittin.
    Benachir T, Lafleur M.
    Biochim Biophys Acta; 1995 May 04; 1235(2):452-60. PubMed ID: 7756355
    [Abstract] [Full Text] [Related]

  • 9. Kinetics of dye efflux and lipid flip-flop induced by delta-lysin in phosphatidylcholine vesicles and the mechanism of graded release by amphipathic, alpha-helical peptides.
    Pokorny A, Almeida PF.
    Biochemistry; 2004 Jul 13; 43(27):8846-57. PubMed ID: 15236593
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Investigation of toroidal pore and oligomerization by melittin using transmission electron microscopy.
    Park SC, Kim JY, Shin SO, Jeong CY, Kim MH, Shin SY, Cheong GW, Park Y, Hahm KS.
    Biochem Biophys Res Commun; 2006 Apr 28; 343(1):222-8. PubMed ID: 16540094
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Effect of lipid headgroup composition on the interaction between melittin and lipid bilayers.
    Strömstedt AA, Wessman P, Ringstad L, Edwards K, Malmsten M.
    J Colloid Interface Sci; 2007 Jul 01; 311(1):59-69. PubMed ID: 17383670
    [Abstract] [Full Text] [Related]

  • 14. Kinetic pathway of antimicrobial peptide magainin 2-induced pore formation in lipid membranes.
    Tamba Y, Ariyama H, Levadny V, Yamazaki M.
    J Phys Chem B; 2010 Sep 23; 114(37):12018-26. PubMed ID: 20799752
    [Abstract] [Full Text] [Related]

  • 15. Thermodynamics of melittin binding to lipid bilayers. Aggregation and pore formation.
    Klocek G, Schulthess T, Shai Y, Seelig J.
    Biochemistry; 2009 Mar 31; 48(12):2586-96. PubMed ID: 19173655
    [Abstract] [Full Text] [Related]

  • 16. Exploring peptide membrane interaction using surface plasmon resonance: differentiation between pore formation versus membrane disruption by lytic peptides.
    Papo N, Shai Y.
    Biochemistry; 2003 Jan 21; 42(2):458-66. PubMed ID: 12525173
    [Abstract] [Full Text] [Related]

  • 17. Poly-l-lysines and poly-l-arginines induce leakage of negatively charged phospholipid vesicles and translocate through the lipid bilayer upon electrostatic binding to the membrane.
    Reuter M, Schwieger C, Meister A, Karlsson G, Blume A.
    Biophys Chem; 2009 Sep 21; 144(1-2):27-37. PubMed ID: 19560854
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Assessment of the multiphase interaction between a membrane disrupting peptide and a lipid membrane.
    Olaru A, Gheorghiu M, David S, Wohland T, Gheorghiu E.
    J Phys Chem B; 2009 Oct 29; 113(43):14369-80. PubMed ID: 19807091
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.