These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


506 related items for PubMed ID: 9485381

  • 1. Phospholipid subclass specific alterations in the passive ion permeability of membrane bilayers: separation of enthalpic and entropic contributions to transbilayer ion flux.
    Zeng Y, Han X, Gross RW.
    Biochemistry; 1998 Feb 24; 37(8):2346-55. PubMed ID: 9485381
    [Abstract] [Full Text] [Related]

  • 2. Nonesterified fatty acids induce transmembrane monovalent cation flux: host-guest interactions as determinants of fatty acid-induced ion transport.
    Zeng Y, Han X, Schlesinger P, Gross RW.
    Biochemistry; 1998 Jun 30; 37(26):9497-508. PubMed ID: 9649333
    [Abstract] [Full Text] [Related]

  • 3. Potassium flux through gramicidin ion channels is augmented in vesicles comprised of plasmenylcholine: correlations between gramicidin conformation and function in chemically distinct host bilayer matrices.
    Chen X, Gross RW.
    Biochemistry; 1995 Jun 06; 34(22):7356-64. PubMed ID: 7540040
    [Abstract] [Full Text] [Related]

  • 4. Phospholipid subclass-specific alterations in the kinetics of ion transport across biologic membranes.
    Chen X, Gross RW.
    Biochemistry; 1994 Nov 22; 33(46):13769-74. PubMed ID: 7947788
    [Abstract] [Full Text] [Related]

  • 5. Why is the sn-2 chain of monounsaturated glycerophospholipids usually unsaturated whereas the sn-1 chain is saturated? Studies of 1-stearoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (SOPC) and 1-oleoyl-2-stearoyl-sn-glycero-3-phosphatidylcholine (OSPC) membranes with and without cholesterol.
    Martinez-Seara H, Róg T, Karttunen M, Vattulainen I, Reigada R.
    J Phys Chem B; 2009 Jun 18; 113(24):8347-56. PubMed ID: 19469492
    [Abstract] [Full Text] [Related]

  • 6. Isothermal titration calorimetry studies of the binding of the antimicrobial peptide gramicidin S to phospholipid bilayer membranes.
    Abraham T, Lewis RN, Hodges RS, McElhaney RN.
    Biochemistry; 2005 Aug 23; 44(33):11279-85. PubMed ID: 16101312
    [Abstract] [Full Text] [Related]

  • 7. Dioxygen transmembrane distributions and partitioning thermodynamics in lipid bilayers and micelles.
    Al-Abdul-Wahid MS, Evanics F, Prosser RS.
    Biochemistry; 2011 May 17; 50(19):3975-83. PubMed ID: 21510612
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Phospholipid-subclass-specific partitioning of lipophilic ions in membrane-water systems.
    Zeng Y, Han X, Gross RW.
    Biochem J; 1999 Mar 15; 338 ( Pt 3)(Pt 3):651-8. PubMed ID: 10051435
    [Abstract] [Full Text] [Related]

  • 10. Calcein permeation across phosphatidylcholine bilayer membrane: effects of membrane fluidity, liposome size, and immobilization.
    Shimanouchi T, Ishii H, Yoshimoto N, Umakoshi H, Kuboi R.
    Colloids Surf B Biointerfaces; 2009 Oct 01; 73(1):156-60. PubMed ID: 19560324
    [Abstract] [Full Text] [Related]

  • 11. Influence of docosahexaenoic acid and cholesterol on lateral lipid organization in phospholipid mixtures.
    Huster D, Arnold K, Gawrisch K.
    Biochemistry; 1998 Dec 08; 37(49):17299-308. PubMed ID: 9860844
    [Abstract] [Full Text] [Related]

  • 12. Structure and properties of phospholipid-peptide monolayers containing monomeric SP-B(1-25) I. Phases and morphology by epifluorescence microscopy.
    Biswas N, Shanmukh S, Waring AJ, Walther F, Wang Z, Chang Y, Notter RH, Dluhy RA.
    Biophys Chem; 2005 Mar 01; 113(3):223-32. PubMed ID: 15620507
    [Abstract] [Full Text] [Related]

  • 13. Binding of oligoarginine to membrane lipids and heparan sulfate: structural and thermodynamic characterization of a cell-penetrating peptide.
    Gonçalves E, Kitas E, Seelig J.
    Biochemistry; 2005 Feb 22; 44(7):2692-702. PubMed ID: 15709783
    [Abstract] [Full Text] [Related]

  • 14. Lipopolysaccharides in bacterial membranes act like cholesterol in eukaryotic plasma membranes in providing protection against melittin-induced bilayer lysis.
    Allende D, McIntosh TJ.
    Biochemistry; 2003 Feb 04; 42(4):1101-8. PubMed ID: 12549932
    [Abstract] [Full Text] [Related]

  • 15. Temperature and cholesterol composition-dependent behavior of 1-myristoyl-2-[12-[(5-dimethylamino-1-naphthalenesulfonyl)amino]dodecanoyl]-sn-glycero-3-phosphocholine in 1,2-dimyristoyl-sn-glycero-3-phosphocholine membranes.
    Troup GM, Wrenn SP.
    Chem Phys Lipids; 2004 Sep 04; 131(2):167-82. PubMed ID: 15351269
    [Abstract] [Full Text] [Related]

  • 16. Cholesterol versus alpha-tocopherol: effects on properties of bilayers made from heteroacid phosphatidylcholines.
    Stillwell W, Dallman T, Dumaual AC, Crump FT, Jenski LJ.
    Biochemistry; 1996 Oct 15; 35(41):13353-62. PubMed ID: 8873602
    [Abstract] [Full Text] [Related]

  • 17. Transbilayer complementarity of phospholipids in cholesterol-rich membranes.
    Zhang J, Jing B, Tokutake N, Regen SL.
    Biochemistry; 2005 Mar 08; 44(9):3598-603. PubMed ID: 15736969
    [Abstract] [Full Text] [Related]

  • 18. Comparison of the effects of cholesterol and oxysterols on phospholipid bilayer microheterogeneity: a study of fluorescence lifetime distributions.
    Li QT, Das NP.
    Arch Biochem Biophys; 1994 Dec 08; 315(2):473-8. PubMed ID: 7986094
    [Abstract] [Full Text] [Related]

  • 19. Isothermal titration calorimetry studies of the binding of a rationally designed analogue of the antimicrobial peptide gramicidin s to phospholipid bilayer membranes.
    Abraham T, Lewis RN, Hodges RS, McElhaney RN.
    Biochemistry; 2005 Feb 15; 44(6):2103-12. PubMed ID: 15697236
    [Abstract] [Full Text] [Related]

  • 20. Lipid headgroups mediate organization and dynamics in bilayers.
    Greenough KP, Blanchard GJ.
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 Jan 15; 71(5):2050-6. PubMed ID: 18805049
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 26.