These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


147 related items for PubMed ID: 9490876

  • 1. Estimating rat renal medullary interstitial oncotic pressures and the driving force for fluid uptake into ascending vasa recta.
    MacPhee PJ.
    J Physiol; 1998 Jan 15; 506 ( Pt 2)(Pt 2):529-38. PubMed ID: 9490876
    [Abstract] [Full Text] [Related]

  • 2. Fluid uptake from the renal medulla into the ascending vasa recta in anaesthetized rats.
    MacPhee PJ, Michel CC.
    J Physiol; 1995 Aug 15; 487(1):169-83. PubMed ID: 7473246
    [Abstract] [Full Text] [Related]

  • 3. An examination of transcapillary water flux in renal inner medulla.
    Sanjana VM, Johnston PA, Robertson CR, Jamison RL.
    Am J Physiol; 1976 Aug 15; 231(2):313-8. PubMed ID: 961881
    [Abstract] [Full Text] [Related]

  • 4. Hydraulic and oncotic pressure measurements in inner medulla of mammalian kidney.
    Sanjana VM, Johnston PA, Deen WM, Robertson CR, Brenner BM, Jamison RL.
    Am J Physiol; 1975 Jun 15; 228(6):1921-6. PubMed ID: 1155623
    [Abstract] [Full Text] [Related]

  • 5. Fluid uptake by the renal medullary vasa recta: an estimate based on a quantitative analysis of the distribution of fenestrae in the vasa recta of young Sprague-Dawley rats.
    MacPhee PJ.
    Exp Physiol; 1998 Jan 15; 83(1):23-34. PubMed ID: 9483417
    [Abstract] [Full Text] [Related]

  • 6. Isolated interstitial nodal spaces may facilitate preferential solute and fluid mixing in the rat renal inner medulla.
    Layton AT, Gilbert RL, Pannabecker TL.
    Am J Physiol Renal Physiol; 2012 Apr 01; 302(7):F830-9. PubMed ID: 22160770
    [Abstract] [Full Text] [Related]

  • 7. Renal medullary microcirculation: architecture and exchange.
    Michel CC.
    Microcirculation; 1995 Aug 01; 2(2):125-39. PubMed ID: 7497165
    [Abstract] [Full Text] [Related]

  • 8. Transport of plasma proteins across vasa recta in the renal medulla.
    Zhang W, Edwards A.
    Am J Physiol Renal Physiol; 2001 Sep 01; 281(3):F478-92. PubMed ID: 11502597
    [Abstract] [Full Text] [Related]

  • 9. Interstitial water and solute recovery by inner medullary vasa recta.
    Edwards A, Delong MJ, Pallone TL.
    Am J Physiol Renal Physiol; 2000 Feb 01; 278(2):F257-69. PubMed ID: 10662730
    [Abstract] [Full Text] [Related]

  • 10. Extravascular protein in the renal medulla: analysis by two methods.
    Pallone TL.
    Am J Physiol; 1994 May 01; 266(5 Pt 2):R1429-36. PubMed ID: 8203616
    [Abstract] [Full Text] [Related]

  • 11. Analysis of microvascular water and solute exchanges in the renal medulla.
    Pallone TL, Morgenthaler TI, Deen WM.
    Am J Physiol; 1984 Aug 01; 247(2 Pt 2):F303-15. PubMed ID: 6465323
    [Abstract] [Full Text] [Related]

  • 12. Architecture of vasa recta in the renal inner medulla of the desert rodent Dipodomys merriami: potential impact on the urine concentrating mechanism.
    Issaian T, Urity VB, Dantzler WH, Pannabecker TL.
    Am J Physiol Regul Integr Comp Physiol; 2012 Oct 01; 303(7):R748-56. PubMed ID: 22914749
    [Abstract] [Full Text] [Related]

  • 13. Architecture of interstitial nodal spaces in the rodent renal inner medulla.
    Gilbert RL, Pannabecker TL.
    Am J Physiol Renal Physiol; 2013 Sep 01; 305(5):F745-52. PubMed ID: 23825077
    [Abstract] [Full Text] [Related]

  • 14. Three-dimensional architecture of collecting ducts, loops of Henle, and blood vessels in the renal papilla.
    Pannabecker TL, Dantzler WH.
    Am J Physiol Renal Physiol; 2007 Sep 01; 293(3):F696-704. PubMed ID: 17609288
    [Abstract] [Full Text] [Related]

  • 15. Resistance of descending vasa recta to the transport of water.
    Pallone TL, Work J, Jamison RL.
    Am J Physiol; 1990 Oct 01; 259(4 Pt 2):F688-97. PubMed ID: 1699435
    [Abstract] [Full Text] [Related]

  • 16. Direct determination of vasa recta blood flow in the rat renal papilla.
    Holliger C, Lemley KV, Schmitt SL, Thomas FC, Robertson CR, Jamison RL.
    Circ Res; 1983 Sep 01; 53(3):401-13. PubMed ID: 6883657
    [Abstract] [Full Text] [Related]

  • 17. Ascending Vasa Recta Are Angiopoietin/Tie2-Dependent Lymphatic-Like Vessels.
    Kenig-Kozlovsky Y, Scott RP, Onay T, Carota IA, Thomson BR, Gil HJ, Ramirez V, Yamaguchi S, Tanna CE, Heinen S, Wu C, Stan RV, Klein JD, Sands JM, Oliver G, Quaggin SE.
    J Am Soc Nephrol; 2018 Apr 01; 29(4):1097-1107. PubMed ID: 29237738
    [Abstract] [Full Text] [Related]

  • 18. Cell volume regulation in the renal papilla.
    Beck FX, Neuhofer W.
    Contrib Nephrol; 2006 Apr 01; 152():181-197. PubMed ID: 17065812
    [Abstract] [Full Text] [Related]

  • 19. Fluid uptake in the renal papilla by vasa recta estimated by two methods simultaneously.
    Zimmerhackl B, Robertson CR, Jamison RL.
    Am J Physiol; 1985 Mar 01; 248(3 Pt 2):F347-53. PubMed ID: 3976897
    [Abstract] [Full Text] [Related]

  • 20. Hyaluronan content in the kidney in different states of body hydration.
    Hansell P, Göransson V, Odlind C, Gerdin B, Hällgren R.
    Kidney Int; 2000 Nov 01; 58(5):2061-8. PubMed ID: 11044226
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.