These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Characterization of human brain kynurenine aminotransferases using [3H]kynurenine as a substrate. Schmidt W, Guidetti P, Okuno E, Schwarcz R. Neuroscience; 1993 Jul; 55(1):177-84. PubMed ID: 8350986 [Abstract] [Full Text] [Related]
5. Histidine degradation via an aminotransferase increases the nutritional flexibility of Candida glabrata. Brunke S, Seider K, Richter ME, Bremer-Streck S, Ramachandra S, Kiehntopf M, Brock M, Hube B. Eukaryot Cell; 2014 Jun; 13(6):758-65. PubMed ID: 24728193 [Abstract] [Full Text] [Related]
6. Crystal structure of Saccharomyces cerevisiae Aro8, a putative α-aminoadipate aminotransferase. Bulfer SL, Brunzelle JS, Trievel RC. Protein Sci; 2013 Oct; 22(10):1417-24. PubMed ID: 23893908 [Abstract] [Full Text] [Related]
7. Escherichia coli mutants deficient in the aspartate and aromatic amino acid aminotransferases. Gelfand DH, Steinberg RA. J Bacteriol; 1977 Apr; 130(1):429-40. PubMed ID: 15983 [Abstract] [Full Text] [Related]
8. Transcriptional induction by aromatic amino acids in Saccharomyces cerevisiae. Iraqui I, Vissers S, André B, Urrestarazu A. Mol Cell Biol; 1999 May; 19(5):3360-71. PubMed ID: 10207060 [Abstract] [Full Text] [Related]
9. An alternative pathway contributes to phenylalanine biosynthesis in plants via a cytosolic tyrosine:phenylpyruvate aminotransferase. Yoo H, Widhalm JR, Qian Y, Maeda H, Cooper BR, Jannasch AS, Gonda I, Lewinsohn E, Rhodes D, Dudareva N. Nat Commun; 2013 May; 4():2833. PubMed ID: 24270997 [Abstract] [Full Text] [Related]
10. A multispecific quintet of aromatic aminotransferases that overlap different biochemical pathways in Pseudomonas aeruginosa. Whitaker RJ, Gaines CG, Jensen RA. J Biol Chem; 1982 Nov 25; 257(22):13550-6. PubMed ID: 6128337 [Abstract] [Full Text] [Related]
12. Aromatic amino acid biosynthesis in Alcaligenes eutrophus H16. II. The isolation and characterization of mutants auxotrophic for phenylalanine and tyrosine. Friedrich B, Schlegel HG. Arch Microbiol; 1975 Apr 07; 103(2):141-9. PubMed ID: 1156090 [Abstract] [Full Text] [Related]
16. Characterization of AAT1: a gene involved in the regulation of amino acid transport in Saccharomyces cerevisiae. Garrett JM. J Gen Microbiol; 1989 Sep 07; 135(9):2429-37. PubMed ID: 2697749 [Abstract] [Full Text] [Related]
17. Significant enhancement of methionol production by co-expression of the aminotransferase gene ARO8 and the decarboxylase gene ARO10 in Saccharomyces cerevisiae. Yin S, Lang T, Xiao X, Liu L, Sun B, Wang C. FEMS Microbiol Lett; 2015 Mar 07; 362(5):. PubMed ID: 25743068 [Abstract] [Full Text] [Related]
18. Identification and characterization of phenylpyruvate decarboxylase genes in Saccharomyces cerevisiae. Vuralhan Z, Morais MA, Tai SL, Piper MD, Pronk JT. Appl Environ Microbiol; 2003 Aug 07; 69(8):4534-41. PubMed ID: 12902239 [Abstract] [Full Text] [Related]
19. Physiological characterization of the ARO10-dependent, broad-substrate-specificity 2-oxo acid decarboxylase activity of Saccharomyces cerevisiae. Vuralhan Z, Luttik MA, Tai SL, Boer VM, Morais MA, Schipper D, Almering MJ, Kötter P, Dickinson JR, Daran JM, Pronk JT. Appl Environ Microbiol; 2005 Jun 07; 71(6):3276-84. PubMed ID: 15933030 [Abstract] [Full Text] [Related]
20. The role of glutamine transaminase K (GTK) in sulfur and alpha-keto acid metabolism in the brain, and in the possible bioactivation of neurotoxicants. Cooper AJ. Neurochem Int; 2004 Jun 07; 44(8):557-77. PubMed ID: 15016471 [Abstract] [Full Text] [Related] Page: [Next] [New Search]