These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
1230 related items for PubMed ID: 9500382
21. The use of hydroxyapatite and autogenous cancellous bone grafts to repair bone defects in rats. Silva RV, Camilli JA, Bertran CA, Moreira NH. Int J Oral Maxillofac Surg; 2005 Mar; 34(2):178-84. PubMed ID: 15695048 [Abstract] [Full Text] [Related]
22. Human segmental mandibular defects treated with naturally derived bone morphogenetic proteins. Ferretti C, Ripamonti U. J Craniofac Surg; 2002 May; 13(3):434-44. PubMed ID: 12040215 [Abstract] [Full Text] [Related]
23. Preliminary evaluation of hydroxyapatite cement as an augmentation device in the edentulous atrophic canine mandible. Bifano CA, Edgin WA, Colleton C, Bifano SL, Constantino PD. Oral Surg Oral Med Oral Pathol Oral Radiol Endod; 1998 May; 85(5):512-6. PubMed ID: 9619665 [Abstract] [Full Text] [Related]
24. A multidisciplinary approach to the healing of cranial and residual maxillary cleft defects by means of allogenous demineralized osseous implants and polylactic acid casts in dogs. Kuyl MH, Thierens H, Dermaut LR, De Ridder L. Cleft Palate Craniofac J; 1999 May; 36(3):207-16. PubMed ID: 10342608 [Abstract] [Full Text] [Related]
25. The effect of implants loaded with autologous mesenchymal stem cells on the healing of canine segmental bone defects. Bruder SP, Kraus KH, Goldberg VM, Kadiyala S. J Bone Joint Surg Am; 1998 Jul; 80(7):985-96. PubMed ID: 9698003 [Abstract] [Full Text] [Related]
26. Orthotopic bone formation in titanium fiber mesh loaded with platelet-rich plasma and placed in segmental defects. Kroese-Deutman HC, Vehof JW, Spauwen PH, Stoelinga PJ, Jansen JA. Int J Oral Maxillofac Surg; 2008 Jun; 37(6):542-9. PubMed ID: 18325739 [Abstract] [Full Text] [Related]
27. Evaluation of teriparatide effect on healing of autografted mandibular defects in rats. Zandi M, Dehghan A, Gheysari F, Rezaeian L, Mohammad Gholi Mezerji N. J Craniomaxillofac Surg; 2019 Jan; 47(1):120-126. PubMed ID: 30528562 [Abstract] [Full Text] [Related]
28. Critical size defect in the canine mandible. Huh JY, Choi BH, Kim BY, Lee SH, Zhu SJ, Jung JH. Oral Surg Oral Med Oral Pathol Oral Radiol Endod; 2005 Sep; 100(3):296-301. PubMed ID: 16122656 [Abstract] [Full Text] [Related]
29. Effect of allogeneic, freeze-dried, demineralized bone matrix on guided bone regeneration in supra-alveolar peri-implant defects in dogs. Caplanis N, Sigurdsson TJ, Rohrer MD, Wikesjö UM. Int J Oral Maxillofac Implants; 1997 Sep; 12(5):634-42. PubMed ID: 9337024 [Abstract] [Full Text] [Related]
30. Comparison of canine mandibular bone regeneration by distraction osteogenesis versus acute resection and rigid external fixation. Gosain AK, Kalantarian B, Song LS, Larson JD, Jenkins CA, Wilson CR. Plast Reconstr Surg; 2004 Nov; 114(6):1490-9; discussion 1500-1. PubMed ID: 15509937 [Abstract] [Full Text] [Related]
31. Alveolar bone regeneration by transplantation of periodontal ligament stem cells and bone marrow stem cells in a canine peri-implant defect model: a pilot study. Kim SH, Kim KH, Seo BM, Koo KT, Kim TI, Seol YJ, Ku Y, Rhyu IC, Chung CP, Lee YM. J Periodontol; 2009 Nov; 80(11):1815-23. PubMed ID: 19905951 [Abstract] [Full Text] [Related]
32. Use of cultivated osteoprogenitor cells to increase bone formation in segmental mandibular defects: an experimental pilot study in sheep. Schliephake H, Knebel JW, Aufderheide M, Tauscher M. Int J Oral Maxillofac Surg; 2001 Dec; 30(6):531-7. PubMed ID: 11829236 [Abstract] [Full Text] [Related]
33. [Experimental study of the shaped titanium mesh combined with autogenous particulate bone graft and simultaneous implant for reconstructing segmental mandibular defect]. Chen N, Guo JL, Zhang SY, Tao JF, Du YF. Zhonghua Kou Qiang Yi Xue Za Zhi; 2009 Jun; 44(6):360-4. PubMed ID: 19953956 [Abstract] [Full Text] [Related]
35. Reconstruction of critical-size mandibular defects in immunoincompetent rats with human adipose-derived stromal cells. Streckbein P, Jäckel S, Malik CY, Obert M, Kähling C, Wilbrand JF, Zahner D, Heidinger K, Kampschulte M, Pons-Kühnemann J, Köhler K, Sauer H, Kramer M, Howaldt HP. J Craniomaxillofac Surg; 2013 Sep; 41(6):496-503. PubMed ID: 23684529 [Abstract] [Full Text] [Related]
36. Osteogenesis in calvarial defects: contribution of the dura, the pericranium, and the surrounding bone in adult versus infant animals. Gosain AK, Santoro TD, Song LS, Capel CC, Sudhakar PV, Matloub HS. Plast Reconstr Surg; 2003 Aug; 112(2):515-27. PubMed ID: 12900610 [Abstract] [Full Text] [Related]
37. Calvarial bone regeneration by a combination of natural anorganic bovine-derived hydroxyapatite matrix coupled with a synthetic cell-binding peptide (PepGen): an experimental study in rats. Mardas N, Stavropoulos A, Karring T. Clin Oral Implants Res; 2008 Oct; 19(10):1010-5. PubMed ID: 18828817 [Abstract] [Full Text] [Related]
38. Bone and suture regeneration in calvarial defects by e-PTFE-membranes and demineralized bone matrix and the impact on calvarial growth: an experimental study in the rat. Mardas N, Kostopoulos L, Karring T. J Craniofac Surg; 2002 May; 13(3):453-62; discussion 462-4. PubMed ID: 12040218 [Abstract] [Full Text] [Related]
39. A synthetic bioactive resorbable graft for predictable implant reconstruction: part one. Valen M, Ganz SD. J Oral Implantol; 2002 May; 28(4):167-77. PubMed ID: 12498463 [Abstract] [Full Text] [Related]
40. Bone regeneration using beta-tricalcium phosphate in a calcium sulfate matrix. Podaropoulos L, Veis AA, Papadimitriou S, Alexandridis C, Kalyvas D. J Oral Implantol; 2009 May; 35(1):28-36. PubMed ID: 19288885 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]