These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


279 related items for PubMed ID: 9501872

  • 1. Effect of eye closures and openings on photostasis in albino rats.
    Williams TP, Henrich S, Reiser M.
    Invest Ophthalmol Vis Sci; 1998 Mar; 39(3):603-9. PubMed ID: 9501872
    [Abstract] [Full Text] [Related]

  • 2. Rhodopsin-mediated blue-light damage to the rat retina: effect of photoreversal of bleaching.
    Grimm C, Wenzel A, Williams T, Rol P, Hafezi F, Remé C.
    Invest Ophthalmol Vis Sci; 2001 Feb; 42(2):497-505. PubMed ID: 11157889
    [Abstract] [Full Text] [Related]

  • 3. Distribution of photon absorption rates across the rat retina.
    Williams TP, Webbers JP, Giordano L, Henderson RP.
    J Physiol; 1998 Apr 15; 508 ( Pt 2)(Pt 2):515-22. PubMed ID: 9508814
    [Abstract] [Full Text] [Related]

  • 4. The relationship between ambient lighting conditions, absolute dark-adapted thresholds, and rhodopsin in black and hypopigmented mice.
    Daly GH, DiLeonardo JM, Balkema NR, Balkema GW.
    Vis Neurosci; 2004 Apr 15; 21(6):925-34. PubMed ID: 15733347
    [Abstract] [Full Text] [Related]

  • 5. Dietary deficiency of N-3 fatty acids alters rhodopsin content and function in the rat retina.
    Bush RA, Malnoë A, Remé CE, Williams TP.
    Invest Ophthalmol Vis Sci; 1994 Jan 15; 35(1):91-100. PubMed ID: 8300367
    [Abstract] [Full Text] [Related]

  • 6. Blue light's effects on rhodopsin: photoreversal of bleaching in living rat eyes.
    Grimm C, Remé CE, Rol PO, Williams TP.
    Invest Ophthalmol Vis Sci; 2000 Nov 15; 41(12):3984-90. PubMed ID: 11053303
    [Abstract] [Full Text] [Related]

  • 7. Photoreceptor autophagy: effects of light history on number and opsin content of degradative vacuoles.
    Remé CE, Wolfrum U, Imsand C, Hafezi F, Williams TP.
    Invest Ophthalmol Vis Sci; 1999 Sep 15; 40(10):2398-404. PubMed ID: 10476808
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. The status of cones in the rhodopsin mutant P23H-3 retina: light-regulated damage and repair in parallel with rods.
    Chrysostomou V, Stone J, Stowe S, Barnett NL, Valter K.
    Invest Ophthalmol Vis Sci; 2008 Mar 15; 49(3):1116-25. PubMed ID: 18326739
    [Abstract] [Full Text] [Related]

  • 10. Biphasic photoreceptor degeneration induced by light in a T17M rhodopsin mouse model of cone bystander damage.
    Krebs MP, White DA, Kaushal S.
    Invest Ophthalmol Vis Sci; 2009 Jun 15; 50(6):2956-65. PubMed ID: 19136713
    [Abstract] [Full Text] [Related]

  • 11. Cone-rod dependence in the rat retina: variation with the rate of rod damage.
    Chrysostomou V, Valter K, Stone J.
    Invest Ophthalmol Vis Sci; 2009 Jun 15; 50(6):3017-23. PubMed ID: 19182251
    [Abstract] [Full Text] [Related]

  • 12. Influence of UVA light stress on photoreceptor cell metabolism: decreased rates of rhodopsin regeneration and opsin synthesis.
    Rapp LM, Ghalayini AJ.
    Exp Eye Res; 1999 Jun 15; 68(6):757-64. PubMed ID: 10375439
    [Abstract] [Full Text] [Related]

  • 13. Reciprocity between light intensity and rhodopsin concentration across the rat retina.
    Williams TP, Squitieri A, Henderson RP, Webbers JP.
    J Physiol; 1999 May 01; 516 ( Pt 3)(Pt 3):869-74. PubMed ID: 10200432
    [Abstract] [Full Text] [Related]

  • 14. [Resynthesis of rhodopsin in rats with hereditary retinal dystrophy].
    Shabanova ME, Tereshchenko OD, Ostapenko IA.
    Biull Eksp Biol Med; 1978 Feb 01; 85(2):167-70. PubMed ID: 630088
    [Abstract] [Full Text] [Related]

  • 15. Alterations in retinal rod outer segment fatty acids and light-damage susceptibility in P23H rats.
    Bicknell IR, Darrow R, Barsalou L, Fliesler SJ, Organisciak DT.
    Mol Vis; 2002 Sep 05; 8():333-40. PubMed ID: 12355060
    [Abstract] [Full Text] [Related]

  • 16. Bright cyclic rearing protects albino mouse retina against acute light-induced apoptosis.
    Káldi I, Martin RE, Huang H, Brush RS, Morrison KA, Anderson RE.
    Mol Vis; 2003 Jul 30; 9():337-44. PubMed ID: 12891098
    [Abstract] [Full Text] [Related]

  • 17. The protective effect of ascorbic acid in retinal light damage of rats exposed to intermittent light.
    Organisciak DT, Jiang YL, Wang HM, Bicknell I.
    Invest Ophthalmol Vis Sci; 1990 Jul 30; 31(7):1195-202. PubMed ID: 2365553
    [Abstract] [Full Text] [Related]

  • 18. The retina of c-fos-/- mice: electrophysiologic, morphologic and biochemical aspects.
    Kueng-Hitz N, Grimm C, Lansel N, Hafezi F, He L, Fox DA, Remé CE, Niemeyer G, Wenzel A.
    Invest Ophthalmol Vis Sci; 2000 Mar 30; 41(3):909-16. PubMed ID: 10711713
    [Abstract] [Full Text] [Related]

  • 19. From candelas to photoisomerizations in the mouse eye by rhodopsin bleaching in situ and the light-rearing dependence of the major components of the mouse ERG.
    Lyubarsky AL, Daniele LL, Pugh EN.
    Vision Res; 2004 Dec 30; 44(28):3235-51. PubMed ID: 15535992
    [Abstract] [Full Text] [Related]

  • 20. Retinal phosphenes and discrete dark noises in rods: a new biophysical framework.
    Bókkon I, Vimal RL.
    J Photochem Photobiol B; 2009 Sep 04; 96(3):255-9. PubMed ID: 19643631
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 14.