These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


207 related items for PubMed ID: 9508806

  • 1. Mitochondrial Ca2+ uptake and release influence metabotropic and ionotropic cytosolic Ca2+ responses in rat oligodendrocyte progenitors.
    Simpson PB, Russell JT.
    J Physiol; 1998 Apr 15; 508 ( Pt 2)(Pt 2):413-26. PubMed ID: 9508806
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Permeability transition pore regulates both mitochondrial membrane potential and agonist-evoked Ca2+ signals in oligodendrocyte progenitors.
    Smaili SS, Russell JT.
    Cell Calcium; 1999 Apr 15; 26(3-4):121-30. PubMed ID: 10598276
    [Abstract] [Full Text] [Related]

  • 4. The role of intracellular Na+ and mitochondria in buffering of kainate-induced intracellular free Ca2+ changes in rat forebrain neurones.
    Hoyt KR, Stout AK, Cardman JM, Reynolds IJ.
    J Physiol; 1998 May 15; 509 ( Pt 1)(Pt 1):103-16. PubMed ID: 9547385
    [Abstract] [Full Text] [Related]

  • 5. Characterization of ryanodine receptors in oligodendrocytes, type 2 astrocytes, and O-2A progenitors.
    Simpson PB, Holtzclaw LA, Langley DB, Russell JT.
    J Neurosci Res; 1998 May 15; 52(4):468-82. PubMed ID: 9589392
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. In situ fluorescence imaging of glutamate-evoked mitochondrial Na+ responses in astrocytes.
    Bernardinelli Y, Azarias G, Chatton JY.
    Glia; 2006 Oct 15; 54(5):460-70. PubMed ID: 16886210
    [Abstract] [Full Text] [Related]

  • 8. Transient receptor potential channel 6-mediated, localized cytosolic [Na+] transients drive Na+/Ca2+ exchanger-mediated Ca2+ entry in purinergically stimulated aorta smooth muscle cells.
    Poburko D, Liao CH, Lemos VS, Lin E, Maruyama Y, Cole WC, van Breemen C.
    Circ Res; 2007 Nov 09; 101(10):1030-8. PubMed ID: 17872462
    [Abstract] [Full Text] [Related]

  • 9. High density distribution of endoplasmic reticulum proteins and mitochondria at specialized Ca2+ release sites in oligodendrocyte processes.
    Simpson PB, Mehotra S, Lange GD, Russell JT.
    J Biol Chem; 1997 Sep 05; 272(36):22654-61. PubMed ID: 9278423
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Cytosolic Ca2+ changes during in vitro ischemia in rat hippocampal slices: major roles for glutamate and Na+-dependent Ca2+ release from mitochondria.
    Zhang Y, Lipton P.
    J Neurosci; 1999 May 01; 19(9):3307-15. PubMed ID: 10212290
    [Abstract] [Full Text] [Related]

  • 12. Ca2+ uptake in mitochondria occurs via the reverse action of the Na+/Ca2+ exchanger in metabolically inhibited MDCK cells.
    Smets I, Caplanusi A, Despa S, Molnar Z, Radu M, VandeVen M, Ameloot M, Steels P.
    Am J Physiol Renal Physiol; 2004 Apr 01; 286(4):F784-94. PubMed ID: 14665432
    [Abstract] [Full Text] [Related]

  • 13. Mitochondria buffer non-toxic calcium loads and release calcium through the mitochondrial permeability transition pore and sodium/calcium exchanger in rat basal forebrain neurons.
    Murchison D, Griffith WH.
    Brain Res; 2000 Jan 31; 854(1-2):139-51. PubMed ID: 10784115
    [Abstract] [Full Text] [Related]

  • 14. Role of sarcoplasmic/endoplasmic-reticulum Ca2+-ATPases in mediating Ca2+ waves and local Ca2+-release microdomains in cultured glia.
    Simpson PB, Russell JT.
    Biochem J; 1997 Jul 01; 325 ( Pt 1)(Pt 1):239-47. PubMed ID: 9224652
    [Abstract] [Full Text] [Related]

  • 15. Inhibition of mitochondrial calcium uptake rather than efflux impedes calcium release by inositol-1,4,5-trisphosphate-sensitive receptors.
    Chalmers S, McCarron JG.
    Cell Calcium; 2009 Aug 01; 46(2):107-13. PubMed ID: 19577805
    [Abstract] [Full Text] [Related]

  • 16. Intracellular calcium clearance in Purkinje cell somata from rat cerebellar slices.
    Fierro L, DiPolo R, Llano I.
    J Physiol; 1998 Jul 15; 510 ( Pt 2)(Pt 2):499-512. PubMed ID: 9705999
    [Abstract] [Full Text] [Related]

  • 17. Mitochondrial Ca2+ uptake prevents desynchronization of quantal release and minimizes depletion during repetitive stimulation of mouse motor nerve terminals.
    David G, Barrett EF.
    J Physiol; 2003 Apr 15; 548(Pt 2):425-38. PubMed ID: 12588898
    [Abstract] [Full Text] [Related]

  • 18. Metabotropic receptor-mediated Ca2+ signaling elevates mitochondrial Ca2+ and stimulates oxidative metabolism in hippocampal slice cultures.
    Kann O, Kovács R, Heinemann U.
    J Neurophysiol; 2003 Aug 15; 90(2):613-21. PubMed ID: 12724360
    [Abstract] [Full Text] [Related]

  • 19. Na+/Ca2+ exchanger modulates kainate-triggered Ca2+ signaling in Bergmann glial cells in situ.
    Kirischuk S, Kettenmann H, Verkhratsky A.
    FASEB J; 1997 Jun 15; 11(7):566-72. PubMed ID: 9212080
    [Abstract] [Full Text] [Related]

  • 20. Quantitative analysis of mitochondrial Ca2+ uptake and release pathways in sympathetic neurons. Reconstruction of the recovery after depolarization-evoked [Ca2+]i elevations.
    Colegrove SL, Albrecht MA, Friel DD.
    J Gen Physiol; 2000 Mar 15; 115(3):371-88. PubMed ID: 10694264
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.