These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
116 related items for PubMed ID: 9513898
1. Genetic differences define severity of renal damage after L-NAME-induced hypertension in rats. Van Dokkum RP, Jacob HJ, Provoost AP. J Am Soc Nephrol; 1998 Mar; 9(3):363-71. PubMed ID: 9513898 [Abstract] [Full Text] [Related]
2. Difference in susceptibility of developing renal damage in normotensive fawn-hooded (FHL) and August x Copenhagen Irish (ACI) rats after N(omega)-nitro-L-arginine methyl ester induced hypertension. van Dokkum RP, Jacob HJ, Provoost AP. Am J Hypertens; 1997 Oct; 10(10 Pt 1):1109-16. PubMed ID: 9370381 [Abstract] [Full Text] [Related]
3. Blood pressure and the susceptibility to renal damage after unilateral nephrectomy and L-NAME-induced hypertension in rats. van Dokkum RP, Jacob HJ, Provoost AP. Nephrol Dial Transplant; 2000 Sep; 15(9):1337-43. PubMed ID: 10978388 [Abstract] [Full Text] [Related]
4. Renal damage susceptibility and autoregulation in RF-1 and RF-5 congenic rats. Van Dijk SJ, Specht PA, Lazar J, Jacob HJ, Provoost AP. Nephron Exp Nephrol; 2005 Sep; 101(2):e59-66. PubMed ID: 15976509 [Abstract] [Full Text] [Related]
5. Genetic susceptibility of the donor kidney contributes to the development of renal damage after syngeneic transplantation. Kouwenhoven EA, van Dokkum RP, Marquet RL, Heemann UW, de Bruin RW, IJzermans JN, Provoost AP. Am J Hypertens; 1999 Jun; 12(6):603-10. PubMed ID: 10371370 [Abstract] [Full Text] [Related]
6. Transfer of the Rf-1 region from FHH onto the ACI background increases susceptibility to renal impairment. Provoost AP, Shiozawa M, Van Dokkum RP, Jacob HJ. Physiol Genomics; 2002 Feb 28; 8(2):123-9. PubMed ID: 11875190 [Abstract] [Full Text] [Related]
7. Synergistic QTL interactions between Rf-1 and Rf-3 increase renal damage susceptibility in double congenic rats. Van Dijk SJ, Specht PA, Lazar J, Jacob HJ, Provoost AP. Kidney Int; 2006 Apr 28; 69(8):1369-76. PubMed ID: 16541022 [Abstract] [Full Text] [Related]
8. Absence of an interaction between the Rf-1 and Rf-5 QTLs influencing susceptibility to renal damage in rats. van Dijk SJ, Specht PA, Lazar J, Jacob HJ, Provoost AP. Nephron Exp Nephrol; 2006 Apr 28; 104(3):e96-e102. PubMed ID: 16837819 [Abstract] [Full Text] [Related]
9. Interaction between Rf-1 and Rf-4 quantitative trait loci increases susceptibility to renal damage in double congenic rats. Van Dijk SJ, Specht PA, Lutz MM, Lazar J, Jacob HJ, Provoost AP. Kidney Int; 2005 Dec 28; 68(6):2462-72. PubMed ID: 16316323 [Abstract] [Full Text] [Related]
10. Substitution of chromosome 1 ameliorates L-NAME hypertension and renal disease in the fawn-hooded hypertensive rat. Mattson DL, Kunert MP, Roman RJ, Jacob HJ, Cowley AW. Am J Physiol Renal Physiol; 2005 May 28; 288(5):F1015-22. PubMed ID: 15644486 [Abstract] [Full Text] [Related]
11. Impaired autoregulation of renal blood flow in the fawn-hooded rat. Van Dokkum RP, Alonso-Galicia M, Provoost AP, Jacob HJ, Roman RJ. Am J Physiol; 1999 Jan 28; 276(1):R189-96. PubMed ID: 9887194 [Abstract] [Full Text] [Related]
12. Chromosomal mapping of the genetic basis of hypertension and renal disease in FHH rats. Mattson DL, Dwinell MR, Greene AS, Kwitek AE, Roman RJ, Cowley AW, Jacob HJ. Am J Physiol Renal Physiol; 2007 Dec 28; 293(6):F1905-14. PubMed ID: 17898042 [Abstract] [Full Text] [Related]
13. Knockout of γ-Adducin Promotes NG-Nitro-L-Arginine-Methyl-Ester-Induced Hypertensive Renal Injury. Fan L, Gao W, Liu Y, Jefferson JR, Fan F, Roman RJ. J Pharmacol Exp Ther; 2021 Apr 28; 377(1):189-198. PubMed ID: 33414130 [Abstract] [Full Text] [Related]
14. Renal myogenic constriction protects the kidney from age-related hypertensive renal damage in the Fawn-Hooded rat. Vavrinec P, Henning RH, Goris M, Landheer SW, Buikema H, van Dokkum RP. J Hypertens; 2013 Aug 28; 31(8):1637-45. PubMed ID: 23811996 [Abstract] [Full Text] [Related]
15. Perinatal Inhibition of NF-KappaB Has Long-Term Antihypertensive and Renoprotective Effects in Fawn-Hooded Hypertensive Rats. Koeners MP, Wesseling S, Sánchez M, Braam B, Joles JA. Am J Hypertens; 2016 Jan 28; 29(1):123-31. PubMed ID: 25958302 [Abstract] [Full Text] [Related]
16. Pathogenesis of glomerular injury in the fawn-hooded rat: early glomerular capillary hypertension predicts glomerular sclerosis. Simons JL, Provoost AP, Anderson S, Troy JL, Rennke HG, Sandstrom DJ, Brenner BM. J Am Soc Nephrol; 1993 May 28; 3(11):1775-82. PubMed ID: 8329672 [Abstract] [Full Text] [Related]
17. Renal vascular dysfunction precedes the development of renal damage in the hypertensive Fawn-Hooded rat. Ochodnický P, Henning RH, Buikema HJ, de Zeeuw D, Provoost AP, van Dokkum RP. Am J Physiol Renal Physiol; 2010 Mar 28; 298(3):F625-33. PubMed ID: 20007352 [Abstract] [Full Text] [Related]
18. Genetic variants on rat chromosome 8 exhibit profound effects on hypertension severity and survival during nitric oxide inhibition in spontaneously hypertensive rats. Schulz A, Schütten-Faber S, Schulte L, Unland J, Kossmehl P, Kreutz R. Am J Hypertens; 2014 Mar 28; 27(3):294-8. PubMed ID: 24363279 [Abstract] [Full Text] [Related]
19. Angiotensin-converting enzyme inhibition in the prevention and treatment of chronic renal damage in the hypertensive fawn-hooded rat. Verseput GH, Provoost AP, Braam BB, Weening JJ, Koomans HA. J Am Soc Nephrol; 1997 Feb 28; 8(2):249-59. PubMed ID: 9048344 [Abstract] [Full Text] [Related]
20. Genetic control of susceptibility for renal damage in hypertensive fawn-hooded rats. Brown DM, Van Dokkum RP, Korte MR, McLauglin MG, Shiozawa M, Jacob HJ, Provoost AP. Ren Fail; 1998 Mar 28; 20(2):407-11. PubMed ID: 9574469 [No Abstract] [Full Text] [Related] Page: [Next] [New Search]