These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


161 related items for PubMed ID: 9517388

  • 1. Structural basis for specificity and potency of xanthine derivatives as activators of the CFTR chloride channel.
    Chappe V, Mettey Y, Vierfond JM, Hanrahan JW, Gola M, Verrier B, Becq F.
    Br J Pharmacol; 1998 Feb; 123(4):683-93. PubMed ID: 9517388
    [Abstract] [Full Text] [Related]

  • 2. Properties of CFTR activated by the xanthine derivative X-33 in human airway Calu-3 cells.
    Bulteau L, Dérand R, Mettey Y, Métayé T, Morris MR, McNeilly CM, Folli C, Galietta LJ, Zegarra-Moran O, Pereira MM, Jougla C, Dormer RL, Vierfond JM, Joffre M, Becq F.
    Am J Physiol Cell Physiol; 2000 Dec; 279(6):C1925-37. PubMed ID: 11078708
    [Abstract] [Full Text] [Related]

  • 3. Discovery of pyrrolo[2,3-b]pyrazines derivatives as submicromolar affinity activators of wild type, G551D, and F508del cystic fibrosis transmembrane conductance regulator chloride channels.
    Noel S, Faveau C, Norez C, Rogier C, Mettey Y, Becq F.
    J Pharmacol Exp Ther; 2006 Oct; 319(1):349-59. PubMed ID: 16829626
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. General anesthetic octanol and related compounds activate wild-type and delF508 cystic fibrosis chloride channels.
    Marcet B, Becq F, Norez C, Delmas P, Verrier B.
    Br J Pharmacol; 2004 Mar; 141(6):905-14. PubMed ID: 14967738
    [Abstract] [Full Text] [Related]

  • 9. Chloride channel expression in cultured human fetal RPE cells: response to oxidative stress.
    Wills NK, Weng T, Mo L, Hellmich HL, Yu A, Wang T, Buchheit S, Godley BF.
    Invest Ophthalmol Vis Sci; 2000 Dec; 41(13):4247-55. PubMed ID: 11095622
    [Abstract] [Full Text] [Related]

  • 10. Development of substituted Benzo[c]quinolizinium compounds as novel activators of the cystic fibrosis chloride channel.
    Becq F, Mettey Y, Gray MA, Galietta LJ, Dormer RL, Merten M, Métayé T, Chappe V, Marvingt-Mounir C, Zegarra-Moran O, Tarran R, Bulteau L, Dérand R, Pereira MM, McPherson MA, Rogier C, Joffre M, Argent BE, Sarrouilhe D, Kammouni W, Figarella C, Verrier B, Gola M, Vierfond JM.
    J Biol Chem; 1999 Sep 24; 274(39):27415-25. PubMed ID: 10488073
    [Abstract] [Full Text] [Related]

  • 11. Purinoceptor activation of chloride transport in cystic fibrosis and CFTR-transfected pancreatic cell lines.
    O'Reilly CM, O'Farrell AM, Ryan MP.
    Br J Pharmacol; 1998 Aug 24; 124(8):1597-606. PubMed ID: 9756374
    [Abstract] [Full Text] [Related]

  • 12. ENaC- and CFTR-dependent ion and fluid transport in human middle ear epithelial cells.
    Choi JY, Son EJ, Kim JL, Lee JH, Park HY, Kim SH, Song MH, Yoon JH.
    Hear Res; 2006 Jan 24; 211(1-2):26-32. PubMed ID: 16226002
    [Abstract] [Full Text] [Related]

  • 13. Expression and function of cystic fibrosis transmembrane conductance regulator in rat intrapulmonary arteries.
    Robert R, Savineau JP, Norez C, Becq F, Guibert C.
    Eur Respir J; 2007 Nov 24; 30(5):857-64. PubMed ID: 17596272
    [Abstract] [Full Text] [Related]

  • 14. Negative regulation of CFTR activity by extracellular ATP involves P2Y2 receptors in CFTR-expressing CHO cells.
    Marcet B, Chappe V, Delmas P, Gola M, Verrier B.
    J Membr Biol; 2003 Jul 01; 194(1):21-32. PubMed ID: 14502440
    [Abstract] [Full Text] [Related]

  • 15. Guanabenz, an alpha2-selective adrenergic agonist, activates Ca2+-dependent chloride currents in cystic fibrosis human airway epithelial cells.
    Norez C, Vandebrouck C, Antigny F, Dannhoffer L, Blondel M, Becq F.
    Eur J Pharmacol; 2008 Sep 11; 592(1-3):33-40. PubMed ID: 18640110
    [Abstract] [Full Text] [Related]

  • 16. Chloride channels in the small intestinal cell line IEC-18.
    Basavappa S, Vulapalli SR, Zhang H, Yule D, Coon S, Sundaram U.
    J Cell Physiol; 2005 Jan 11; 202(1):21-31. PubMed ID: 15389550
    [Abstract] [Full Text] [Related]

  • 17. Activation of apical CFTR and basolateral Ca(2+)-activated K+ channels by tetramethylpyrazine in Caco-2 cell line.
    Zhu JX, Zhang GH, Yang N, Rowlands DK, Wong HY, Tsang LL, Chung YW, Chan HC.
    Eur J Pharmacol; 2005 Mar 14; 510(3):187-95. PubMed ID: 15763242
    [Abstract] [Full Text] [Related]

  • 18. Patch clamp on the luminal membrane of exocrine gland acini from frog skin (Rana esculenta) reveals the presence of cystic fibrosis transmembrane conductance regulator-like Cl- channels activated by cyclic AMP.
    Sørensen JB, Larsen EH.
    J Gen Physiol; 1998 Jul 14; 112(1):19-31. PubMed ID: 9649581
    [Abstract] [Full Text] [Related]

  • 19. Synthesis, SAR, crystal structure, and biological evaluation of benzoquinoliziniums as activators of wild-type and mutant cystic fibrosis transmembrane conductance regulator channels.
    Marivingt-Mounir C, Norez C, Dérand R, Bulteau-Pignoux L, Nguyen-Huy D, Viossat B, Morgant G, Becq F, Vierfond JM, Mettey Y.
    J Med Chem; 2004 Feb 12; 47(4):962-72. PubMed ID: 14761197
    [Abstract] [Full Text] [Related]

  • 20. Functional interaction of CFTR and ENaC in sweat glands.
    Reddy MM, Quinton PM.
    Pflugers Arch; 2003 Jan 12; 445(4):499-503. PubMed ID: 12548396
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.