These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


157 related items for PubMed ID: 9521666

  • 21. Ca2+ sensitivity of phospholipid scrambling in human red cell ghosts.
    Woon LA, Holland JW, Kable EP, Roufogalis BD.
    Cell Calcium; 1999 Apr; 25(4):313-20. PubMed ID: 10456228
    [Abstract] [Full Text] [Related]

  • 22. The role of phospholipid asymmetry in calcium-phosphate-induced fusion of human erythrocytes.
    Schewe M, Müller P, Korte T, Herrmann A.
    J Biol Chem; 1992 Mar 25; 267(9):5910-5. PubMed ID: 1556105
    [Abstract] [Full Text] [Related]

  • 23. Transbilayer movement of NBD-labeled phospholipids in red blood cell membranes: outward-directed transport by the multidrug resistance protein 1 (MRP1).
    Dekkers DW, Comfurius P, Schroit AJ, Bevers EM, Zwaal RF.
    Biochemistry; 1998 Oct 20; 37(42):14833-7. PubMed ID: 9778357
    [Abstract] [Full Text] [Related]

  • 24. The cholesterol content of the erythrocyte membrane is an important determinant of phosphatidylserine exposure.
    van Zwieten R, Bochem AE, Hilarius PM, van Bruggen R, Bergkamp F, Hovingh GK, Verhoeven AJ.
    Biochim Biophys Acta; 2012 Dec 20; 1821(12):1493-500. PubMed ID: 22960544
    [Abstract] [Full Text] [Related]

  • 25. Human erythrocyte protein 4.1 is a phosphatidylserine binding protein.
    Rybicki AC, Heath R, Lubin B, Schwartz RS.
    J Clin Invest; 1988 Jan 20; 81(1):255-60. PubMed ID: 3335640
    [Abstract] [Full Text] [Related]

  • 26. Steroid-derived phospholipid scramblases induce exposure of phosphatidylserine on the surface of red blood cells.
    DiVittorio KM, Lambert TN, Smith BD.
    Bioorg Med Chem; 2005 Jul 15; 13(14):4485-90. PubMed ID: 15878664
    [Abstract] [Full Text] [Related]

  • 27. Increased adherence of sickled and phosphatidylserine-enriched human erythrocytes to cultured human peripheral blood monocytes.
    Schwartz RS, Tanaka Y, Fidler IJ, Chiu DT, Lubin B, Schroit AJ.
    J Clin Invest; 1985 Jun 15; 75(6):1965-72. PubMed ID: 4008648
    [Abstract] [Full Text] [Related]

  • 28. A model for the extracellular release of PAF: the influence of plasma membrane phospholipid asymmetry.
    Bratton DL, Kailey JM, Clay KL, Henson PM.
    Biochim Biophys Acta; 1991 Feb 11; 1062(1):24-34. PubMed ID: 1705442
    [Abstract] [Full Text] [Related]

  • 29. Measurements of Intracellular Ca2+ Content and Phosphatidylserine Exposure in Human Red Blood Cells: Methodological Issues.
    Wesseling MC, Wagner-Britz L, Boukhdoud F, Asanidze S, Nguyen DB, Kaestner L, Bernhardt I.
    Cell Physiol Biochem; 2016 Feb 11; 38(6):2414-25. PubMed ID: 27287398
    [Abstract] [Full Text] [Related]

  • 30. Activation of the alternative pathway of complement by calcium-loaded erythrocytes resulting from loss of membrane phospholipid asymmetry.
    Test ST, Mitsuyoshi J.
    J Lab Clin Med; 1997 Aug 11; 130(2):169-82. PubMed ID: 9280144
    [Abstract] [Full Text] [Related]

  • 31. Hyperglycemia induces a loss of phospholipid asymmetry in human erythrocytes.
    Wilson MJ, Richter-Lowney K, Daleke DL.
    Biochemistry; 1993 Oct 26; 32(42):11302-10. PubMed ID: 8218195
    [Abstract] [Full Text] [Related]

  • 32. Binding of annexin V to bilayers with various phospholipid compositions using glass beads in a flow cytometer.
    Stuart MC, Reutelingsperger CP, Frederik PM.
    Cytometry; 1998 Dec 01; 33(4):414-9. PubMed ID: 9845435
    [Abstract] [Full Text] [Related]

  • 33. Alteration of membrane phospholipid bilayer organization in human erythrocytes during drug-induced endocytosis.
    Schrier SL, Chiu DT, Yee M, Sizer K, Lubin B.
    J Clin Invest; 1983 Nov 01; 72(5):1698-705. PubMed ID: 6630521
    [Abstract] [Full Text] [Related]

  • 34. Changes of phosphatidylserine distribution in human red blood cells during the process of loading sugars.
    Quan GB, Liu MX, Ren SP, Zhang JG, Han Y.
    Cryobiology; 2006 Aug 01; 53(1):107-18. PubMed ID: 16762335
    [Abstract] [Full Text] [Related]

  • 35. Protein kinase C as a measure of transbilayer phosphatidylserine asymmetry.
    Daleke DL, Huestis WH, Newton AC.
    Anal Biochem; 1994 Feb 15; 217(1):33-40. PubMed ID: 8203737
    [Abstract] [Full Text] [Related]

  • 36. Bidirectional transbilayer movement of phospholipid analogs in human red blood cells. Evidence for an ATP-dependent and protein-mediated process.
    Connor J, Pak CH, Zwaal RF, Schroit AJ.
    J Biol Chem; 1992 Sep 25; 267(27):19412-7. PubMed ID: 1527061
    [Abstract] [Full Text] [Related]

  • 37. Propensity of red blood cells to undergo P2X7 receptor-mediated phosphatidylserine exposure does not alter during in vivo or ex vivo aging.
    Sophocleous RA, Mullany PR, Winter KM, Marks DC, Sluyter R.
    Transfusion; 2015 Aug 25; 55(8):1946-54. PubMed ID: 25823581
    [Abstract] [Full Text] [Related]

  • 38.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 39. Drug-induced transmembrane lipid scrambling in erythrocytes and in liposomes requires the presence of polyanionic phospholipids.
    Moreau C, Sulpice JC, Devaux PF, Zachowski A.
    Mol Membr Biol; 1997 Aug 25; 14(1):5-12. PubMed ID: 9160335
    [Abstract] [Full Text] [Related]

  • 40.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 8.