These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Structure-function relationship in the globular type III antifreeze protein: identification of a cluster of surface residues required for binding to ice. Chao H, Sönnichsen FD, DeLuca CI, Sykes BD, Davies PL. Protein Sci; 1994 Oct; 3(10):1760-9. PubMed ID: 7849594 [Abstract] [Full Text] [Related]
5. Comparative modeling of the three-dimensional structure of type II antifreeze protein. Sönnichsen FD, Sykes BD, Davies PL. Protein Sci; 1995 Mar; 4(3):460-71. PubMed ID: 7540906 [Abstract] [Full Text] [Related]
6. The role of Ca2+-coordinating residues of herring antifreeze protein in antifreeze activity. Li Z, Lin Q, Yang DS, Ewart KV, Hew CL. Biochemistry; 2004 Nov 23; 43(46):14547-54. PubMed ID: 15544325 [Abstract] [Full Text] [Related]
7. Ca2+-dependent antifreeze proteins. Modulation of conformation and activity by divalent metal ions. Ewart KV, Yang DS, Ananthanarayanan VS, Fletcher GL, Hew CL. J Biol Chem; 1996 Jul 12; 271(28):16627-32. PubMed ID: 8663288 [Abstract] [Full Text] [Related]
16. Alternative roles for putative ice-binding residues in type I antifreeze protein. Loewen MC, Chao H, Houston ME, Baardsnes J, Hodges RS, Kay CM, Sykes BD, Sönnichsen FD, Davies PL. Biochemistry; 1999 Apr 13; 38(15):4743-9. PubMed ID: 10200162 [Abstract] [Full Text] [Related]
17. Cystine-rich fish antifreeze is produced as an active proprotein precursor in fall armyworm cells. Duncker BP, Gauthier SY, Davies PL. Biochem Biophys Res Commun; 1994 Sep 30; 203(3):1851-7. PubMed ID: 7945337 [Abstract] [Full Text] [Related]