These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


122 related items for PubMed ID: 9525858

  • 1. The formation of chondrules: petrologic tests of the shock wave model.
    Connolly Jr HC, Love SG.
    Science; 1998 Apr 03; 280(5360):62-7. PubMed ID: 9525858
    [Abstract] [Full Text] [Related]

  • 2. Formation of chondrules in a moderately high dust enriched disk: evidence from oxygen isotopes of chondrules from the Kaba CV3 chondrite.
    Hertwig AT, Defouilloy C, Kita NT.
    Geochim Cosmochim Acta; 2018 Mar 01; 224():116-131. PubMed ID: 30713348
    [Abstract] [Full Text] [Related]

  • 3. Young chondrules in CB chondrites from a giant impact in the early Solar System.
    Krot AN, Amelin Y, Cassen P, Meibom A.
    Nature; 2005 Aug 18; 436(7053):989-92. PubMed ID: 16107841
    [Abstract] [Full Text] [Related]

  • 4. Evaporation in the young solar nebula as the origin of 'just-right' melting of chondrules.
    Cohen BA, Hewins RH, Yu Y.
    Nature; 2000 Aug 10; 406(6796):600-2. PubMed ID: 10949294
    [Abstract] [Full Text] [Related]

  • 5. Size-frequency distributions and physical properties of chondrules from x-ray computed microtomography and digital data extraction.
    Friedrich JM, Chen MM, Giordano SA, Matalka OK, Strasser JW, Tamucci KA, Rivers ML, Ebel DS.
    Microsc Res Tech; 2022 May 10; 85(5):1814-1824. PubMed ID: 34962014
    [Abstract] [Full Text] [Related]

  • 6. Are some chondrule rims formed by impact processes? Observations and experiments.
    Bunch TE, Schultz P, Cassen P, Brownlee D, Podolak M, Lissauer J, Reynolds R, Chang S.
    Icarus; 1991 May 10; 91():76-92. PubMed ID: 11538105
    [Abstract] [Full Text] [Related]

  • 7. Extended chondrule formation intervals in distinct physicochemical environments: Evidence from Al-Mg isotope systematics of CR chondrite chondrules with unaltered plagioclase.
    Tenner TJ, Nakashima D, Ushikubo T, Tomioka N, Kimura M, Weisberg MK, Kita NT.
    Geochim Cosmochim Acta; 2019 Sep 01; 260():133-160. PubMed ID: 32255837
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Chondrules as direct thermochemical sensors of solar protoplanetary disk gas.
    Libourel G, Portail M.
    Sci Adv; 2018 Jul 01; 4(7):eaar3321. PubMed ID: 30009256
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Tungsten isotopic constraints on the age and origin of chondrules.
    Budde G, Kleine T, Kruijer TS, Burkhardt C, Metzler K.
    Proc Natl Acad Sci U S A; 2016 Mar 15; 113(11):2886-91. PubMed ID: 26929340
    [Abstract] [Full Text] [Related]

  • 17. Short time interval for condensation of high-temperature silicates in the solar accretion disk.
    Luu TH, Young ED, Gounelle M, Chaussidon M.
    Proc Natl Acad Sci U S A; 2015 Feb 03; 112(5):1298-303. PubMed ID: 25605942
    [Abstract] [Full Text] [Related]

  • 18. Electromagnetic heating in the early solar nebula and the formation of chondrules.
    Eisenhour DD, Daulton TL, Buseck PR.
    Science; 1994 Aug 19; 265(5175):1067-70. PubMed ID: 17832896
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.