These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
344 related items for PubMed ID: 9530871
1. Presence of the CO2-concentrating mechanism in some species of the pyrenoid-less free-living algal genus Chloromonas (Volvocales, Chlorophyta). Morita E, Abe T, Tsuzuki M, Fujiwara S, Sato N, Hirata A, Sonoike K, Nozaki H. Planta; 1998 Mar; 204(3):269-76. PubMed ID: 9530871 [Abstract] [Full Text] [Related]
2. The Rubisco small subunits in the green algal genus Chloromonas provide insights into evolutionary loss of the eukaryotic carbon-concentrating organelle, the pyrenoid. Matsuzaki R, Suzuki S, Yamaguchi H, Kawachi M, Kanesaki Y, Yoshikawa H, Mori T, Nozaki H. BMC Ecol Evol; 2021 Jan 25; 21(1):11. PubMed ID: 33514317 [Abstract] [Full Text] [Related]
4. Rubisco and carbon-concentrating mechanism co-evolution across chlorophyte and streptophyte green algae. Goudet MMM, Orr DJ, Melkonian M, Müller KH, Meyer MT, Carmo-Silva E, Griffiths H. New Phytol; 2020 Aug 25; 227(3):810-823. PubMed ID: 32249430 [Abstract] [Full Text] [Related]
6. Pyrenoid Starch Sheath Is Required for LCIB Localization and the CO2-Concentrating Mechanism in Green Algae. Toyokawa C, Yamano T, Fukuzawa H. Plant Physiol; 2020 Apr 25; 182(4):1883-1893. PubMed ID: 32041908 [Abstract] [Full Text] [Related]
8. Thylakoid luminal θ-carbonic anhydrase critical for growth and photosynthesis in the marine diatom Phaeodactylum tricornutum. Kikutani S, Nakajima K, Nagasato C, Tsuji Y, Miyatake A, Matsuda Y. Proc Natl Acad Sci U S A; 2016 Aug 30; 113(35):9828-33. PubMed ID: 27531955 [Abstract] [Full Text] [Related]
9. CO2-dependent migration and relocation of LCIB, a pyrenoid-peripheral protein in Chlamydomonas reinhardtii. Yamano T, Toyokawa C, Shimamura D, Matsuoka T, Fukuzawa H. Plant Physiol; 2022 Feb 04; 188(2):1081-1094. PubMed ID: 34791500 [Abstract] [Full Text] [Related]
10. The pyrenoid: the eukaryotic CO2-concentrating organelle. He S, Crans VL, Jonikas MC. Plant Cell; 2023 Sep 01; 35(9):3236-3259. PubMed ID: 37279536 [Abstract] [Full Text] [Related]
12. Pyrenoid loss in Chlamydomonas reinhardtii causes limitations in CO2 supply, but not thylakoid operating efficiency. Caspari OD, Meyer MT, Tolleter D, Wittkopp TM, Cunniffe NJ, Lawson T, Grossman AR, Griffiths H. J Exp Bot; 2017 Jun 01; 68(14):3903-3913. PubMed ID: 28911055 [Abstract] [Full Text] [Related]
13. The CO2 concentrating mechanism and photosynthetic carbon assimilation in limiting CO2 : how Chlamydomonas works against the gradient. Wang Y, Stessman DJ, Spalding MH. Plant J; 2015 May 01; 82(3):429-448. PubMed ID: 25765072 [Abstract] [Full Text] [Related]
15. Condensation of Rubisco into a proto-pyrenoid in higher plant chloroplasts. Atkinson N, Mao Y, Chan KX, McCormick AJ. Nat Commun; 2020 Dec 09; 11(1):6303. PubMed ID: 33298923 [Abstract] [Full Text] [Related]
17. Pyrenoid loss impairs carbon-concentrating mechanism induction and alters primary metabolism in Chlamydomonas reinhardtii. Mitchell MC, Metodieva G, Metodiev MV, Griffiths H, Meyer MT. J Exp Bot; 2017 Jun 01; 68(14):3891-3902. PubMed ID: 28520898 [Abstract] [Full Text] [Related]
18. Identification of a novel gene, CIA6, required for normal pyrenoid formation in Chlamydomonas reinhardtii. Ma Y, Pollock SV, Xiao Y, Cunnusamy K, Moroney JV. Plant Physiol; 2011 Jun 01; 156(2):884-96. PubMed ID: 21527423 [Abstract] [Full Text] [Related]
19. The algal pyrenoid: key unanswered questions. Meyer MT, Whittaker C, Griffiths H. J Exp Bot; 2017 Jun 01; 68(14):3739-3749. PubMed ID: 28911054 [Abstract] [Full Text] [Related]